Chuyên đề 2: Phương pháp quy nạp toán học và nhị thức Newton
Chuyên đề 2: Phương pháp quy nạp toán học và nhị thức Newton

Giải bài 8 trang 39 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Đề bài

Từ 15 bút chì màu có màu khác nhau đôi một,

a) Có bao nhiêu cách chọn ra một số bút chì màu, tính cả trường trường hợp hợp không chọn cái nào?

b) Có bao nhiêu cách chọn ra ít nhất 8 bút chì màu?

Lời giải chi tiết

a)

Số cách chọn ra 0 bút chì màu là: \(1 = C_{15}^0\) (Không chọn cái nào là 1 cách)

Số cách chọn ra 1 bút chì màu là: \(C_{15}^1\)

Số cách chọn ra k bút chì màu là: \(C_{15}^k\)

\( \Rightarrow \)Tổng số cách chọn ra một số bút chì màu là: \(C_{15}^0 + C_{15}^1 + C_{15}^2 + ... + C_{15}^{15}\)

Theo công thức nhị thức Newton, ta có:

\({\left( {1 + x} \right)^{15}} = C_{15}^0 + C_{15}^1x + C_{15}^2{x^2} + ... + C_{15}^{15}{x^{15}}\)

Thay \(x = 1\) ta được \(C_{15}^0 + C_{15}^1 + C_{15}^2 + ... + C_{15}^{15} = {2^{15}} = 32768\)

Vậy có 32768 cách chọn ra một số bút chì màu, tính cả trường hợp không chọn cái nào.

b) Số cách chọn ra k bút chì màu là: \(C_{15}^k\)

\( \Rightarrow \)Tổng số cách chọn ra ít nhất 8 bút chì màu là: \(C_{15}^8 + C_{15}^9 + C_{15}^{10} + ... + C_{15}^{15}\)

Mà \(C_{15}^k = C_{15}^{15 - k},0 \le k \le 15\)

\(\begin{array}{l} \Rightarrow C_{15}^8 + C_{15}^9 + C_{15}^{10} + ... + C_{15}^{15} = C_{15}^7 + C_{15}^6 + C_{15}^5 + ... + C_{15}^0\\\frac{1}{2}\left( {C_{15}^0 + C_{15}^1 + C_{15}^2 + ... + C_{15}^{15}} \right) = \frac{1}{2}{.2^{15}} = 16384\end{array}\)

Vậy có 16384 cách chọn ra ít nhất 8 bút chì màu.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved