Bài 5. Hoạt động thực hành và trải nghiệm: Các bài toán về đo đạc và gấp hình
Bài tập cuối chương III
Bài 2. Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương
Bài 3. Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
Bài 4. Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
Bài 1. Hình hộp chữ nhật. Hình lập phương
HĐ 4
HĐ 4
Cho biểu thức M = \(\frac{1}{7}.(\frac{{ - 5}}{8}) + \frac{1}{7}.(\frac{{ - 11}}{8})\). Hãy tính giá trị của M theo 2 cách:
a) Thực hiện tính nhân rồi cộng 2 kết quả
b) Áp dụng tính chất phân phối của phép nhân đối với phép cộng
Phương pháp giải:
a) Thực hiện tính nhân rồi cộng 2 kết quả
b) Áp dụng tính chất phân phối của phép nhân đối với phép cộng: a . b + a.c = a. (b +c)
Lời giải chi tiết:
a)
\(\begin{array}{l}M = \frac{1}{7}.(\frac{{ - 5}}{8}) + \frac{1}{7}.(\frac{{ - 11}}{8})\\ = \frac{{ - 5}}{{56}} + \frac{{ - 11}}{{56}} = \frac{{ - 16}}{{56}} = \frac{{ - 2}}{7}\end{array}\)
b)
\(\begin{array}{l}M = \frac{1}{7}.(\frac{{ - 5}}{8}) + \frac{1}{7}.(\frac{{ - 11}}{8})\\ = \frac{1}{7}.[(\frac{{ - 5}}{8}) + (\frac{{ - 11}}{8})]\\ = \frac{1}{7}.\frac{{ - 16}}{8}\\ = \frac{1}{7}.( - 2)\\ = \frac{{ - 2}}{7}\end{array}\)
Thực hành 5
Thực hành 5
Tính:
a)\(A = \frac{5}{{11}}.\left( {\frac{{ - 3}}{{23}}} \right).\frac{{11}}{5}.\left( { - 4,6} \right);\) b) \(B = \left( {\frac{{ - 7}}{9}} \right).\frac{{13}}{{25}} - \frac{{13}}{{25}}.\frac{2}{9}\)
Phương pháp giải:
Áp dụng tính chất phân phối của phép nhân đối với phép cộng: a.b+a.c=a(b+c)
Lời giải chi tiết:
a)
\(\begin{array}{l}A = \frac{5}{{11}}.\left( {\frac{{ - 3}}{{23}}} \right).\frac{{11}}{5}.\left( { - 4,6} \right)\\A = \frac{5}{{11}}.\left( {\frac{{ - 3}}{{23}}} \right).\frac{{11}}{5}.\frac{{ - 23}}{5}\\A = \frac{{5.\left( { - 3} \right).11.\left( { - 23} \right)}}{{11.23.5.5}}\\A = \frac{3}{5}\end{array}\)
b)
\(\begin{array}{l}B = \left( {\frac{{ - 7}}{9}} \right).\frac{{13}}{{25}} - \frac{{13}}{{25}}.\frac{2}{9}\\B = \frac{{13}}{{25}}.\left( {\frac{{ - 7}}{9} - \frac{2}{9}} \right)\\B = \frac{{13}}{{25}}.(-1)\\B = \frac{{-13}}{{25}}.\end{array}\)
Vận dụng 2
Vận dụng 2
Giải bài toán ở hoạt động khởi động (Trang 11)
Một toà nhà cao tầng có hai tầng hầm. Tầng hầm B1 có chiều cao 2,7 m. Tầng hầm B2 có chiều cao bằng \(\frac{4}{3}\) tầng hầm B1. Tính chiều cao tầng hầm của toà nhà so với mặt đất.
Phương pháp giải:
- Tính chiều cao tầng hầm B2
- Chiều cao tầng hầm của toà nhà so với mặt đất = Chiều cao tầng hầm B1 + Chiều cao tầng hầm B1
Lời giải chi tiết:
Chiều cao tầng hầm B2 là:
\(2,7.\frac{4}{3} = \frac{{18}}{5} = 3,6\,\,(m)\)
Chiều cao tầng hầm của toà nhà so với mặt đất là:
\(2,7 + 3,6 = 6,3\,\,(m)\)
Bài 5. Màu sắc trăm miền
Chương 7: Tam giác
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Giáo dục công dân lớp 7
Bài 10: Lắng nghe trái tim mình
Unit 4. Community Services
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7