Đề kiểm tra giữa học kì 2 Toán 7 - Đề số 5 - Chân trời sáng tạo

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
Lời giải
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
Lời giải

Đề bài

I. TRẮC NGHIỆM ( 2 điểm)

Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Câu 1. Tam giác ABC có Tìm độ dài cạnh AB, biết độ dài này là một số nguyên .
    A. 6cm                                B. 7cm                                     C. 8cm                                    D. 9cm

Câu 2. Biểu thức đại số biểu thị tổng bình phương của hai số là:

     A.               B.                   C.    D.                                                                             

Câu 3. Cho Số đo góc theo thứ tự là:
   A.                B.                   C.                            D.

Câu 4. Khẳng định nào sau đây là đúng? 

     A. Số không phải là một đa thức.

     B. Nếu cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường thẳng.

     C. Nếu cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường tròn.

     D. Số được gọi là một đa thức không và có bậc bằng

Câu 5. Trong các cặp số sau, có mấy cặp tạo thành tỉ lệ thức:

(1)                                                     (2)

(3)                                                     (4)

     A. 1                                    B. 2                                         C. 3                                        D. 4           

Câu 6. Có bao nhiêu đơn thức trong các biểu thức

A.                                     B.                                     C.                                     D.

Câu 7. Quan sát hình vẽ bên:

 

Để theo trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh thì cần thêm điều kiện?

     A.                      B.                           C.                          D.    

Câu 8. Nếu đại lượng tỉ lệ thuận với đại lượng theo hệ số tỉ lệ là 2025 thì đại lượng tỉ lệ thuận với đại lượng theo hệ số tỉ lệ là:

A.                                  B.                                C.                        D.

II. PHẦN TỰ LUẬN (8,0 điểm)

Bài 1. (2 điểm) Cho biết hai đại lượng tỉ lệ nghịch với nhau và khi thì .

a) Tìm hệ số tỉ lệ nghịch của đối với .

b) Hãy biểu diễn theo .

c) Tính giá trị của khi .

Bài 2. (2 điểm) Hai ô tô khởi hành cùng một lúc đến . Xe thứ nhất đi từ đến hết giờ, xe thứ hai đi từ đến hết giờ. Đến chỗ gặp nhau, xe thứ hai đã đi được một quãng đường dài hơn xe thứ nhất đã đi là km. Tính quãng đường .

Bài 3. (3,5 điểm) Cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB.

a) Chứng minh rằng: BM = CN

b) Chứng minh rằng: BC đi qua trung điểm của đoạn thẳng MN.

c) Đường trung trực của MN và tia phân giác của cắt nhau tại K. Chứng minh rằng từ đó suy ra KC vuông góc với AN.

Bài 4. (0,5 điểm) Cho và thỏa mãn Tính giá trị của biểu thức

Lời giải

I. Trắc nghiệm

1. C

2. B

3. B

4. B

5. A

6. B

7. A

8. C

Câu 1.

Phương pháp:

Áp dụng bất đẳng thức tam giác để tìm cạnh còn lại.
Cách giải:

Áp dụng bất đẳng thức cho tam giác ABC ta có:

Chọn C.

Câu 2.

Phương pháp:                

Dùng các chữ, các số và các phép toán để diễn đạt các mệnh đề phát biểu bằng lời.

Cách giải:

Tổng bình phương của hai số là:

Chọn B.

Câu 3.

Phương pháp:

So sánh độ dài các cạnh rồi dựa vào mối quan hệ giữa cạnh và góc trong một tam giác để so sánh các góc với nhau. Trong một tam giác, góc đối diện với cạnh lớn hơn thì góc lớn hơn.
Cách giải:

Ta có:

Chọn B.

Câu 4.

Phương pháp:

Áp dụng định nghĩa về đa thức và tính chất tam giác cân.
Cách giải:

Xét từng đáp án:

A. Số không phải là một đa thức. Sai Vì số 0 là đa thức 0 

B. Nếu cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường thẳng. Đúng: (vẽ một tam giác cân và xác định trọng tâm, trực tâm, điểm cách đều 3 đỉnh, điểm nằm trong tam giác và cách đều 3 cạnh ta thấy chúng cùng nằm trên một đường thẳng) 

C. Nếu cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường tròn. Sai Vì chúng nằm trên cùng 1 đường thẳng.

D. Số được gọi là một đa thức không và có bậc bằng 0. Sai Vì số 0 được gọi là đa thức không và nó là đa thức không có bậc.

Chọn B

Câu 5.

Phương pháp:

Vận dụng tính chất của tỉ lệ thức.

Cách giải:

+ Đáp án A

Ta có: nên (1) không tạo thành tỉ lệ thức

+ Đáp án B

Ta có: nên (2) không tạo thành tỉ lệ thức

+ Đáp án C.

Ta có: nên (3) không tạo thành tỉ lệ thức

+ Đáp án D

Ta có: nên (4) tạo thành tỉ lệ thức

Chọn A.

Câu 6.

Phương pháp:

Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến.

Cách giải:

Biểu thức là các đơn thức.

Vậy có đơn thức.

Chọn B.

Câu 7.

Phương pháp:

Vận dụng định lí: Nếu ba cạnh của tam giác bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

Cách giải:

Xét có:

(giả thiết)

là cạnh chung

Do đó, để theo trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh thì cần thêm điều kiện về cạnh là .

Chọn A.

Câu 8.

Phương pháp:

Nếu đại lượng tỉ lệ thuận với đại lượng theo hệ số tỉ lệ thì ta có công thức:

Cách giải:

Vì đại lượng tỉ lệ thuận với đại lượng theo hệ số tỉ lệ là 2025 nên ta có công thức:

Từ đó suy ra

Do đó, đại lượng tỉ lệ thuận với đại lượng theo hệ số tỉ lệ .

Chọn C.

Chú ý: Nếu đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ k thì đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ .

II. PHẦN TỰ LUẬN (8,0 điểm)

Bài 1.

Phương pháp:

a) Nếu đại lượng y liên hệ với đại lượng x theo công thức  hay (a là hằng số khác 0) thì y tỉ lệ nghịch với x theo hệ số tỉ lệ a.

c) Thay giá trị của x vào công thức liên hệ, tìm giá trị y tương ứng

Cách giải:

a) Vì x và y là hai đại lượng tỉ lệ nghịch với nhau nên hệ số tỉ lệ

b) Vì x và y là hai đại lượng tỉ lệ nghịch với nhau theo hệ số tỉ lệ nên

Vậy công thức biểu diễn y theo x là

c) Với thì

Với thì

Bài 2.

Phương pháp:

Tính chất dãy tỉ số bằng nhau:

Cách giải:

Gọi quãng đường của xe thứ nhất đi được từ đến chỗ gặp là (km)

Gọi quãng đường của xe thứ hai đi được từ đến chỗ gặp là (km)

Ta có:

Quãng đường đi được của xe thứ hai dài hơn xe thứ nhất km nên

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

Do đó (thỏa mãn)

          (thỏa mãn)

Quãng đường dài là (km)

Vậy quãng đường dài là (km).

Bài 3.

Phương pháp:

a) Sử dụng tính chất tam giác cân, sau đó dùng giả thiết đã cho lập luận để suy ra điều phải chứng minh.

b) Sử dụng các trường hợp bằng nhau của tam giác để suy ra các cặp tam giác bằng nhau, từ đó suy ra điều phải chứng minh.

c) Sử dụng các trường hợp bằng nhau của tam giác để chứng minh hai góc bằng nhau, sử dụng thêm tính chất hai góc kề bù để suy ra điều phải chứng minh.
Cách giải:

a) Do tam giác ABC cân tại A, suy ra AB = AC.

Ta có: AM + AN = AB – BM + AC + CN = 2AB – BM + CN.

Ta lại có AM + AN = 2AB(gt), nên suy ra .

b) Gọi I là giao điểm của MNBC. Vậy BM = CN (đpcm)

Qua M kẻ đường thẳng song song với AC cắt BC tại E.

Do ME // NC nên ta có:

(hai góc so le trong)

(hai góc so le trong)

(hai góc đồng vị) nên cân tại M  nên MB = ME. Do đó, ME = CN.

Ta chứng minh được

Suy ra MI = NI (hai cạnh tương ứng), từ đó suy ra I là trung điểm của MN.

c) Xét hai tam giác MIKNIK có:

MI = IN (cmt),

IK là cạnh chung. Do đó .

Suy ra KM = KN (hai cạnh tương ứng).

Xét hai tam giác ABKACK có:

AB = AC(gt),

(do BK là tia phân giác của góc BAC),

AK là cạnh chung,

Do đó .

Suy ra KB = KC (hai cạnh tương ứng).

Xét hai tam giác BKMCKN có:

MB = CN, BK = KN, MK = KC,

Do đó ,

Suy ra .

(đpcm)

Bài 4.

Áp dụng tính chất của dãy tỉ số bằng nhau.

Cách giải:

- Trường hợp thay vảo biểu thức ta được:

- Trường hợp 2:

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

Suy ra thay vào biểu thức ta được:

Vậy: khi

         khi .

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Bài giải cùng chuyên mục

Giải câu 4 trang 128 SBT địa 12 Giải câu 4 trang 128 SBT địa 12
Giải câu 2 trang 129 SBT địa 12 Giải câu 2 trang 129 SBT địa 12
Giải câu 5 trang 129 SBT địa 12 Giải câu 5 trang 129 SBT địa 12
Giải câu 3 trang 130 SBT địa 12 Giải câu 3 trang 130 SBT địa 12
Giải câu 4 trang 130 SBT địa 12 Giải câu 4 trang 130 SBT địa 12
Xem thêm
Bạn có câu hỏi cần được giải đáp?
logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi