Đề kiểm tra giữa học kì 2 Toán 7 - Đề số 2 - Chân trời sáng tạo

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
Lời giải
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
Lời giải

Đề bài

I. TRẮC NGHIỆM ( 3 điểm)

Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Câu 1. Thay tỉ số 1,25 : 3,45 bằng tỉ số giữa các số nguyên ta được

A. 12,5 : 34,5;

B. 29 : 65;

C. 25 : 69;

D. 1 : 3.

Câu 2. Biết 7x = 4y và y – x = 24. Khi đó, giá trị của x, y là

A. x = −56, y = −32;

B. x = 32, y = 56;

C. x = 56, y = 32;

D. x = 56, y = −32.

Câu 3. Biết y tỉ lệ thuận với x theo hệ số tỉ lệ k = 2. Khi x = –3 thì giá trị của y bằng bao nhiêu?

A. –6;

B. 0;

C. –9;

D. –1.

Câu 4. Cho x và y là hai đại lượng tỉ lệ nghịch với nhau và khi x = –12 thì y = 8. Khi x = 3 thì y bằng:

A. –32;

B. 32;

C. –2;

D. 2.

Câu 5. Biểu thức đại số biểu thị “Lập phương của tổng của hai số x và y” là

A. x3 – y3;

B. x + y;

C. x3 + y3;

D. (x + y)3.

Câu 6. Một tam giác có ba góc có số đo tỉ lệ với 3,4,5. Số đo ba góc của tam giác lần lượt là:

A. 450; 600; 750;

B. 300; 600; 900;

C. 200; 600; 1000;

D. Một kết quả khác.

Câu 7. Cho tam giác . Gọi là trung điểm của . Nếu thì số đo của là:

     A.                      B.                           C.                            D.      

Câu 8. Cho tam giác vuông tại . Tia phân giác của góc cắt . Kẻ vuông góc với .Chọn câu đúng.

     A.                     B.                          C.                          D.    

Câu 9. Cho tam giác MNP có: . Khẳng định nào sau đây là đúng ?

A. MP < MN;

B. MP = MN;

C. MP > MN;

D. Không đủ dữ kiện so sánh.

Câu 10. Cho tam giác MNP có: MN < MP, MD ⊥ NP. Khẳng định nào sau đây là đúng?

 

A. DN = DP;

B. MD < MP;

C. MD > MN;

D. MN = MP.

Câu 11. Bộ ba độ dài đoạn thẳng nào sau đây không thể tạo thành một tam giác?

A. 18cm; 28cm; 10cm;

B. 5cm; 4cm; 6cm;

C. 15cm; 18cm; 20cm;

D. 11cm; 9cm; 7cm.

Câu 12. Cho G là trọng tâm tam giác MNP có trung tuyến MK. Khẳng định nào sau đây là đúng?

A. ;

B.  ;

C. ;

D. .

II. PHẦN TỰ LUẬN (7,0 điểm)

Bài 1. (2 điểm) Tìm biết:

a)                                                                                    b)

            c)

Bài 2. (2 điểm) Tính chu vi của hình chữ nhật biết rằng chiều dài và chiều rộng của hình chữ nhật đó lần lượt tỉ lệ với và hai lần chiều dài hơn ba lần chiều rộng là 8 cm.

Bài 3. (2,5 điểm) Cho vuông tại , đường trung tuyến . Trên tia đối của tia lấy điểm sao cho .

a) Chứng minh .

b) Trên tia đối của tia , lấy điểm sao cho , qua điểm vẽ đường thẳng song song với cắt tại . Chứng minh , từ đó suy ra là tam giác vuông cân.

Bài 4. (0,5 điểm) Cho x,y,z thỏa mãn: với x,y,z khác 0. Tính:

.

Lời giải

I. Trắc nghiệm

1.C

2.B

3. A

4.A

5.A

6. A

7.D

8.D

9.B

10.B

11.A

12.C

Câu 1.

Phương pháp

Nhân cả tử và mẫu của phân số với 1 số khác 0, ta được phân số có giá trị không đổi.

Lời giải

1,25 : 3,45 = 125 : 345 = 25 : 69.

Chọn C.

Câu 2.

Phương pháp

Áp dụng tính chất dãy tỉ số bằng nhau

Lời giải

Vì 7x = 4y nên

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

Do đó x = 4 . 8 = 32; y = 7 . 8 = 56.

Chọn B.

Câu 3.

Phương pháp

Đại lượng  tỉ lệ thuận với  theo hệ số tỉ lệ thì

Lời giải

Khi x = - 3 thì

Chọn A.

Câu 4.

Phương pháp

Tính chất hai đại lượng tỉ lệ nghịch: tích 2 giá trị tương ứng của 2 đại lượng luôn không đổi (bằng hệ số tỉ lệ)

Cách giải:

Hệ số tỉ lệ là: -12 . 8 = -96.

Khi x = 3 thì y = -96 : 3 = -32.

Chọn A

Câu 5.

Phương pháp

Tính chất hai đại lượng tỉ lệ nghịch: tích 2 giá trị tương ứng của 2 đại lượng luôn không đổi (bằng hệ số tỉ lệ)

Cách giải:

Hệ số tỉ lệ là: -21 . 12 = -252.

Khi x = 7 thì y = -252 : 7 = -36.

Chọn A

Câu 6.

Phương pháp

Áp dụng:

Định lí Tổng định lí 3 góc trong một tam giác bằng 180 độ.

Tính chất của dãy tỉ số bằng nhau

Cách giải:

Gọi số đo 3 góc của tam giác lần lượt là a,b,c.

Vì tổng 3 góc trong một tam giác là 180 độ nên .

Do số đo ba góc tỉ lệ với 3;4;5 nên .

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

Chọn A.

Câu 7.

Phương pháp:

Vận dụng định lí:

+ Nếu ba cạnh của tam giác bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

+ Tổng ba góc trong một tam giác bằng .

Cách giải:

* Vì là trung điểm của nên (tính chất trung điểm của đoạn thẳng)

* Xét có:

(giả thiết)

(chứng minh trên)

là cạnh chung

Suy ra

Do đó, (hai góc tương ứng) hay

Xét có: (tổng ba góc trong một tam giác)

Vậy

Chọn D.

Câu 8.

Phương pháp:

Chứng minh hai tam giác vuông bằng nhau theo trường hợp cạnh huyền – góc nhọn, từ đó suy ra cặp cạnh tương ứng bằng nhau.

Cách giải:

Xét có:

                

                   chung

                 (vì là tia phân giác )

(cạnh huyền – góc nhọn)

(hai cạnh tương ứng).

Chọn D.

Câu 9.

Phương pháp: Áp dụng định lí tổng ba góc trong tam giác, tính góc M.

Dựa vào quan hệ giữa cạnh và góc đối diện trong tam giác.

Cách giải:

 

Xét tam giác MNP có:  (định lí tổng ba góc trong một tam giác)

Ta được:

Mà cạnh NP là cạnh đối của góc M, MN là cạnh đối của góc P.

Vậy NP = MN.

Chọn B.

Câu 10:

Phương pháp: Sử dụng mối quan hệ đường xiên và hình chiếu.

Sử dụng quan hệ đường vuông góc và đường xiên.

Cách giải:

Trong tam giác MNP có MN < MP, hình chiếu của MN và MP trên cạnh NP lần lượt là ND và PD.

Do đó, ND < PD.

Ta có: MD < MP (đường vuông góc nhỏ hơn đường xiên)

Chọn B

Câu 11.

Phương pháp: Bất đẳng thức tam giác: Kiểm tra tổng độ dài 2 cạnh nhỏ hơn có lớn hơn độ dài cạnh lớn nhất không. Nếu không thì bộ 3 độ dài đó không tạo được thành tam giác.

Cách giải:

Vì 18 + 10 = 28 nên không thỏa mãn bất đẳng thức tam giác.

Do đó, bộ ba độ dài đoạn thẳng 18 cm; 28 cm; 10 cm không thể tạo thành một tam giác.

Chọn A.

Câu 12.

Phương pháp

Nếu có trung tuyến và trọng tâm thì

Lời giải

 

Vì G là trọng tâm tam giác MNP nên G là giao điểm của ba đường trung tuyến nên 

Chọn C.

II. PHẦN TỰ LUẬN (7,0 điểm)

Bài 1. (1,5 điểm)

a) + b) Thực hiện các phép toán với số hữu tỉ.

c) Vận dụng định nghĩa hai phân thức bằng nhau.

Cách giải:

a)

Vậy

 

b)

Vậy

 

  

c)

Vậy

Câu 2 (1 điểm)

Phương pháp:

Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là (cm) (điều kiện: )

Áp dụng tính chất của dãy tỉ số bằng nhau.

Cách giải:

Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là (cm) (điều kiện: )

Theo đề bài: chiều dài và chiều rộng của hình chữ nhật đó lần lượt tỉ lệ với  nên ta có:

Hai lần chiều dài hơn ba lần chiều rộng là cm nên

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

Khi đó, (tmđk)

  (tmđk)

Chu vi của hình chữ nhật là: (cm)

Bài 5. (2,0 điểm)

Phương pháp:

a) Ta sẽ chứng minh:

b) Ta sẽ chứng minh: , từ đó chứng minh được (cạnh huyền – cạnh góc vuông)

(hai góc tương ứng)

vuông cân tại

Cách giải:

 

a) vuông tại là đường trung tuyến

Ta có: (hai góc đối đỉnh)

Xét có:

b) Ta có: (hai góc tương ứng)

Mà hai góc ở vị trí so le trong

vuông tại

tại tại (vì ) hay

Xét có:

(cạnh huyền – cạnh góc vuông)

(hai góc tương ứng)

(vì )

vuông cân tại

Bài 4. (0,5 điểm)

Phương pháp:

Đặt

Cách giải:

Đặt

Ta có:          

Vậy

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
Bạn có câu hỏi cần được giải đáp?
logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi