GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 16 Trang 153 SGK Đại số và Giải tích 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Một viên đạn được bắn lên theo phương thẳng đứng với vận tốc ban đầu 25 m/s. gia tốc trọng trường là \(9,8\,m/{s^2}\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Sau bao lâu viên đạn đạt tới độ cao lớn nhất.

Lời giải chi tiết:

Vì viên đạn được bắn lên theo phương thẳng đứng hướng lên trên nên \(a =  - 9,8\)

\( \Rightarrow v\left( t \right) = \int {\left( { - 9,8} \right)dt} \) \( =  - 9,8t + C\).

\(v\left( 0 \right) = 25\) \( \Rightarrow  - 9,8.0 + C = 25\) \( \Leftrightarrow C = 25\)

\( \Rightarrow v\left( t \right) =  - 9,8t + 25\)

\( \Rightarrow S\left( t \right) = \int {v\left( t \right)dt} \) \( = \int {\left( { - 9,8t + 25} \right)dt} \) \( =  - 9,8.\dfrac{{{t^2}}}{2} + 25t + C\) \( =  - 4,9{t^2} + 25t + C\)

Do viên đạn được bắn lên từ mặt đất nên \(S\left( 0 \right) = 0\) \( \Leftrightarrow  - 4,{9.0^2} + 25.0 + C = 0\) \( \Leftrightarrow C = 0\)

\( \Rightarrow S\left( t \right) =  - 4,9{t^2} + 25t\) \( =  - 4,9\left( {{t^2} - \dfrac{{25}}{{4,9}}t + {{\left( {\dfrac{{12,5}}{{4,9}}} \right)}^2}} \right) + \dfrac{{3125}}{{98}}\) \( = \dfrac{{3125}}{{98}} - 4,9{\left( {t - \dfrac{{12,5}}{{4,9}}} \right)^2}\) \( \le \dfrac{{3125}}{{98}}\)

\( \Rightarrow {S_{\max }} = \dfrac{{3125}}{{98}}\) khi \(t = \dfrac{{12,5}}{{4,9}} \approx 2,55\left( s \right)\).

Vậy sau \(2,55s\) viên đạn đạt độ cao lớn nhất.

Cách khác:

Gọi v(t) là vận tốc của viên đạn. Ta có   

Suy ra \(v\left( t \right) =  - 9,8t + C.\)

Vì \(v(0)=25\) nên suy ra \(C=25\)

Vậy \(v\left( t \right) =  - 9,8t + 25.\)

Gọi T là thời điểm viên đạn đạt tốc độ cao nhất, tại đó vận tốc viên đạn có vận tốc bằng 0 (S đạt cực đại tại điểm \(t=t_0\) thì S' tại đó bằng 0)

Vậy \(v(T)=0\) suy ra \(T = {{25} \over {9,8}} \approx 2,55\,\) (giây).

LG b

Tính quãng đường viên đạn đi được tính từ lúc bắn lên cho đến khi rơi xuống đất.

Lời giải chi tiết:

Theo câu a, tại thời điểm \(t \approx 2,55s\) thì \({S_{\max }} = \dfrac{{3125}}{{98}}\) nghĩa là viên đạn đi được quãng đường \(S = \dfrac{{3125}}{{98}}\left( m \right)\).

Tuy nhiên viên đạn còn rơi xuống đúng một quãng đường như vậy đến khi chạm đất nên quang đường viên đạn đi được cho đến khi chạm đất là \(2S = 63,78\left( m \right)\).

Cách khác:

Quãng đường viên đạn đi được cho tới thời điểm \(T=2,55\) (giây) là:

\(S = \int\limits_0^T {\left( { - 9,8t + 25} \right)dt}  \) \(=  - 9,8{{{T^2}} \over 2} + 25T \approx 31,89\,\left( m \right)\)

Vậy quãng đường viên đạn đi được cho đến khi rơi là xuống đất là \(2S = 63,78\left( m \right).\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved