Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một hàm số đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Câu hỏi và bài tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập trắc nghiệm khách quan chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Toán 12 Nâng cao
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
Bài 1. Nguyên hàm
Bài 2. Một số phương pháp tìm nguyên hàm
Bài 3. Tích phân
Bài 4. Một số phương pháp tích phân
Bài 5. Ứng dụng tích phân để tính diện tích hình phẳng
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
Bài tập trắc nghiệm khách quan chương III - Nguyên hàm, tích phân và ứng dụng - Toán 12 Nâng cao
Tính các tích phân sau :
LG a
\(\int\limits_0^{{\pi \over 4}} {x\cos 2xdx;} \)
Phương pháp giải:
Sử dụng phương pháp từng phần \(\left\{ \matrix{
u = x \hfill \cr
dv = \cos 2xdx \hfill \cr} \right.\)
Lời giải chi tiết:
Đặt
\(\left\{ \matrix{
u = x \hfill \cr
dv = \cos 2xdx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr
v = {1 \over 2}\sin 2x \hfill \cr} \right.\)
Do đó \(\int\limits_0^{{\pi \over 4}} {x\cos 2xdx }\) \(= \left. {{1 \over 2}x\sin 2x} \right|_0^{{\pi \over 4}} - {1 \over 2}\int\limits_0^{{\pi \over 4}} {\sin 2xdx} \)
\( = {\pi \over 8} + \left. {{1 \over 4}\cos 2x} \right|_0^{{\pi \over 4}} \) \(= {\pi \over 8} + {1 \over 4}\left( { - 1} \right) = {\pi \over 8} - {1 \over 4}.\)
LG b
\(\int\limits_0^1 {{{\ln \left( {2 - x} \right)} \over {2 - x}}} dx;\)
Phương pháp giải:
Sử dụng phương pháp đổi biến \(u = \ln \left( {2 - x} \right) \)
Lời giải chi tiết:
Đặt \(u = \ln \left( {2 - x} \right) \Rightarrow du = {{ - 1} \over {2 - x}}dx\)
\(\int\limits_0^1 {{{\ln \left( {2 - x} \right)} \over {2 - x}}} dx = - \int\limits_{\ln 2}^0 {udu} = \int\limits_0^{\ln 2} {udu}\) \( = \left. {{{{u^2}} \over 2}} \right|_0^{\ln 2} = {1 \over 2}{\left( {\ln 2} \right)^2}\)
LG c
\(\int\limits_0^{{\pi \over 2}} {{x^2}\cos xdx;} \)
Phương pháp giải:
Sử dụng phương pháp từng phần \(\left\{ \matrix{
u = {x^2} \hfill \cr
dv = \cos xdx \hfill \cr} \right.\)
Lời giải chi tiết:
Đặt
\(\left\{ \matrix{
u = {x^2} \hfill \cr
dv = \cos xdx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = 2xdx \hfill \cr
v = {\mathop{\rm s}\nolimits} {\rm{inx}} \hfill \cr} \right.\)
Do đó \(I = \int\limits_0^{{\pi \over 2}} {{x^2}\cos xdx }\) \( = {x^2} \left. {{\mathop{\rm s}\nolimits} {\rm{inx}}} \right|_0^{{\pi \over 2}}- 2\int\limits_0^{{\pi \over 2}} {x\sin xdx }\) \(= {{{\pi ^2}} \over 4} - 2{I_1}\)
Với \({I_1} = \int\limits_0^{{\pi \over 2}} {x\sin xdx} \)
Đặt
\(\left\{ \matrix{
u = x \hfill \cr
dv = \sin {\rm{x}}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr
v = - \cos x \hfill \cr} \right.\)
Do đó \({I_1} = - x\left. {\cos x} \right|_0^{{\pi \over 2}} + \int\limits_0^{{\pi \over 2}} {\cos xdx}\)
\( = - \frac{\pi }{2}\cos \frac{\pi }{2} + 0\cos 0 + \left. {\sin x} \right|_0^{\frac{\pi }{2}} \) \(= 0 + \sin \frac{\pi }{2} - \sin 0 = 1\)
Vậy \(I = {{{\pi ^2}} \over 4} - 2\)
LG d
\(\int\limits_0^1 {{x^2}\sqrt {{x^3} + 1} dx;} \)
Phương pháp giải:
Đổi biến \(u = \sqrt {{x^3} + 1}\)
Lời giải chi tiết:
Đặt \(u = \sqrt {{x^3} + 1} \Rightarrow {u^2} = {x^3} + 1 \) \(\Rightarrow 2udu = 3{x^2}dx \Rightarrow {x^2}dx = {2 \over 3}udu\)
\(\int\limits_0^1 {{x^2}\sqrt {{x^3} + 1} dx} = {2 \over 3}\int\limits_1^{\sqrt 2 } {{u^2}du = \left. {{{2{u^3}} \over 9}} \right|} _1^{\sqrt 2 } \) \(= {2 \over 9}\left( {2\sqrt 2 - 1} \right)\)
LG e
\(\int\limits_1^e {{x^2}\ln xdx.} \)
Phương pháp giải:
Sử dụng phương pháp từng phần \(\left\{ \matrix{
u = \ln x \hfill \cr
dv = {x^2}dx \hfill \cr} \right. \)
Lời giải chi tiết:
Đặt
\(\left\{ \matrix{
u = \ln x \hfill \cr
dv = {x^2}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = {{dx} \over x} \hfill \cr
v = {{{x^3}} \over 3} \hfill \cr} \right.\)
Do đó \(\int\limits_1^e {{x^2}\ln xdx = \left. {{{{x^3}} \over 3}\ln x} \right|} _1^e - {1 \over 3}\int\limits_1^e {{x^2}dx }\) \(= {{{e^3}} \over 3} - \left. {{1 \over 9}{x^3}} \right| _1^e = \frac{{{e^3}}}{3} - \frac{1}{9}\left( {{e^3} - 1} \right)\) \(= {{2{e^3} + 1} \over 9}\)
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Ngữ văn lớp 12
Bài 9. Thiên nhiên nhiệt đới ẩm gió mùa
Đề ôn tập học kì 2 – Có đáp án và lời giải
PHẦN BẢY. SINH THÁI HỌC
Tác giả - Tác phẩm tập 1