GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 28 Trang 167 SGK Đại số và Giải tích 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Tính diện tích hình phẳng giới hạn bởi:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Đồ thị các hàm số \(y = {x^2} - 4\), \(y =  - {x^2} - 2x\) và đường thẳng \(x =  - 3,x =  - 2;\)

Phương pháp giải:

Tính diện tích hình phẳng giới hạn bởi các đồ thị hàm số \(y = f\left( x \right),y = g\left( x \right),\) \(x = a,x = b\).

+) B1: Tìm nghiệm \(a \le {x_1} < {x_2} < ... < {x_n} \le b\) của phương trình hoành độ giao điểm \(f\left( x \right) = g\left( x \right)\).

+) B2: Tính diện tích theo công thức:

\(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)

\( = \int\limits_a^{{x_1}} {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \) \( + \int\limits_{{x_1}}^{{x_2}} {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \) \( + ... + \int\limits_{{x_{n - 1}}}^{{x_n}} {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \) \( + \int\limits_{{x_n}}^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)

\( = \left| {\int\limits_a^{{x_1}} {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} } \right|\)\( + \left| {\int\limits_{{x_1}}^{{x_2}} {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} } \right|\) \( + ... + \left| {\int\limits_{{x_{n - 1}}}^{{x_n}} {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} } \right|\) \( + \left| {\int\limits_{{x_n}}^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} } \right|\)

Lời giải chi tiết:

Cách 1: Tính diện tích theo công thức

Ta có: \({x^2} - 4 =  - {x^2} - 2x\) \( \Leftrightarrow 2{x^2} + 2x - 4 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 2\end{array} \right.\)

Có \( - 3 <  - 2 < 1\) nên \(S = \int\limits_{ - 3}^{ - 2} {\left| {{x^2} - 4 - \left( { - {x^2} - 2x} \right)} \right|dx} \) \( = \int\limits_{ - 3}^{ - 2} {\left| {2{x^2} + 2x - 4} \right|dx} \) \( = \left| {\int\limits_{ - 3}^{ - 2} {\left( {2{x^2} + 2x - 4} \right)dx} } \right|\)

\( = \left| {\left( {2.\frac{{{x^3}}}{3} + 2.\frac{{{x^2}}}{2} - 4x} \right)_{ - 3}^{ - 2}} \right|\) \( = \left| {\frac{{20}}{3} - 3} \right| = \frac{{11}}{3}\)

Cách 2: Xét dấu

Ta có

 

Ta thấy, khi \( - 3 \le x \le  - 2\) thì \(2{x^2} + 2x - 4 \ge 0\)

\( \Rightarrow \left| {2{x^2} + 2x - 4} \right| = 2{x^2} + 2x - 4\).

Do đó,

\(S = \int\limits_{ - 3}^{ - 2} {\left| {{x^2} - 4 - \left( { - {x^2} - 2x} \right)} \right|} dx \) \(= \int\limits_{ - 3}^{ - 2} {\left( {2{x^2} + 2x - 4} \right)} dx\)

\( = 2\int\limits_{ - 3}^{ - 2} {\left( {{x^2} + x - 2} \right)} dx\)

\( = 2\left. {\left( {{{{x^3}} \over 3} + {{{x^2}} \over 2} - 2x} \right)} \right|_{ - 3}^{ - 2} = {{11} \over 3}\)

Chú ý:

Khi việc xét dấu phức tạp ta nên làm theo cách 1 sẽ tránh được việc lập bảng xét dấu.

LG b

Đồ thị hai hàm số \(y = {x^2}\) và \(y =  - {x^2} - 2x\)

Lời giải chi tiết:

Cách 1:

Phương trình hoành độ giao điểm của hai đồ thị là:

\({x^2} - 4 = - {x^2} - 2x \Leftrightarrow {x^2} + x - 2 = 0 \) \(\Leftrightarrow \left[ \matrix{
x = - 2 \hfill \cr 
x = 1 \hfill \cr} \right.\)

\(S = \int\limits_{ - 2}^1 {\left| {{x^2} - 4 - \left( { - {x^2} - 2x} \right)} \right|dx} \) \( = \int\limits_{ - 2}^1 {\left| {2{x^2} + 2x - 4} \right|dx} \) \( = \left| {\int\limits_{ - 2}^1 {\left( {2{x^2} + 2x - 4} \right)dx} } \right|\)

\( = \left| {\left( {\dfrac{{2{x^3}}}{3} + \dfrac{{2{x^2}}}{2} - 4x} \right)_{ - 2}^1} \right|\) \( = \left| { - \dfrac{7}{3} - \dfrac{{20}}{3}} \right| = \left| { - 9} \right| = 9\)

Cách 2:

Phương trình hoành độ giao điểm của hai đồ thị là:

\({x^2} - 4 = - {x^2} - 2x \Leftrightarrow {x^2} + x - 2 = 0 \) \(\Leftrightarrow \left[ \matrix{
x = - 2 \hfill \cr 
x = 1 \hfill \cr} \right.\)

Ta thấy, khi \( - 2 \le x \le  1\) thì \(2{x^2} + 2x - 4 \le 0\)

\( \Rightarrow \left| {2{x^2} + 2x - 4} \right| = -2{x^2} - 2x + 4\).

Do đó,

\(S = \int\limits_{ - 2}^1 {\left| {{x^2} - 4 - \left( { - {x^2} - 2x} \right)} \right|} dx \) \(= \int\limits_{ - 2}^1 {\left| {2{x^2} + 2x - 4} \right|} dx\)

\( = \int\limits_{ - 2}^1 {\left( { - 2{x^2} - 2x + 4} \right)} dx \) \(= \left. {\left( { - {{2{x^3}} \over 3} - {x^2} + 4x} \right)} \right|_{ - 2}^1 = 9\)

LG c

Đồ thị hàm số \(y = {x^3} - 4x\), trục hoành, đường thẳng x=-2 và đường thẳng x=4

Lời giải chi tiết:

Cách 1:

Ta có: \({x^3} - 4x = 0 \Leftrightarrow x\left( {{x^2} - 4} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\\x =  - 2\end{array} \right.\)

Ta thấy, \( - 2 < 0 < 2 < 4\)

\( \Rightarrow S = \int\limits_{ - 2}^4 {\left| {{x^3} - 4x} \right|dx} \) \( = \int\limits_{ - 2}^0 {\left| {{x^3} - 4x} \right|dx}  + \int\limits_0^2 {\left| {{x^3} - 4x} \right|dx} \) \(+ \int\limits_2^4 {\left| {{x^3} - 4x} \right|dx}\) \( = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right|\) \(+ \left| {\int\limits_2^4 {\left( {{x^3} - 4x} \right)dx} } \right|\)

\( = \left| {\left( {\dfrac{{{x^4}}}{4} - \dfrac{{4{x^2}}}{2}} \right)_{ - 2}^0} \right| + \left| {\left( {\dfrac{{{x^4}}}{4} - \dfrac{{4{x^2}}}{2}} \right)_0^2} \right|\) \(+ \left| {\left( {\dfrac{{{x^4}}}{4} - \dfrac{{4{x^2}}}{2}} \right)_2^4} \right|\) \( = \left| {0 - \left( { - 4} \right)} \right| + \left| { - 4 - 0} \right|+ \left| { 32 - (-4)} \right|\) \( = 44\)

Cách 2:

\(S = \int\limits_{ - 2}^4 {\left| {{x^3} - 4x} \right|} dx \) \(= \int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)} dx - \int\limits_0^2 {\left( {{x^3} - 4x} \right)} dx \) \(+ \int\limits_2^4 {\left( {{x^3} - 4x} \right)} dx \) 

\( = \left( {\dfrac{{{x^4}}}{4} - \dfrac{{4{x^2}}}{2}} \right)_{ - 2}^0 - \left( {\dfrac{{{x^4}}}{4} - \dfrac{{4{x^2}}}{2}} \right)_0^2\) \( + \left( {\dfrac{{{x^4}}}{4} - \dfrac{{4{x^2}}}{2}} \right)_2^4\)

\( = 4 - \left( { - 4} \right) + 36\)

\(= 44\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved