GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 35 trang 35 SGK giải tích 12 nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Tìm các tiệm cận của đồ thị hàm số sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

\(\,y = {{2x - 1} \over {{x^2}}} + x - 3\,;\)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash \left\{ 0 \right\}\)
* Vì \(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ - }} y =  - \infty \) nên x = 0 là tiệm cận đứng.
* \(\mathop {\lim }\limits_{x \to  \pm \infty } \left[ {y - \left( {x - 3} \right)} \right] \) \(= \mathop {\lim }\limits_{x \to  \pm \infty } {{2x - 1} \over {{x^2}}} \) \(= \mathop {\lim }\limits_{x \to  \pm \infty } \left( {{2 \over x} - {1 \over {{x^2}}}} \right) = 0\) nên y = x – 3 là tiệm cận xiên.

LG b

\(\,\,{{{x^3} + 2} \over {{x^2} - 2x}}\)

Phương pháp giải:

Đường thẳng y=ax+b (\(a\ne 0\)) là TCX của đồ thị hàm số y=f(x) khi và chỉ khi

\(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{{f\left( x \right)}}{x},b = \mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - ax} \right]\)

hoặc \(a = \mathop {\lim }\limits_{x \to  - \infty } \frac{{f\left( x \right)}}{x},b = \mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right) - ax} \right]\)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash \left\{ {0;2} \right\}\)
* \(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} =  - \infty \) và \(\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} =  + \infty \) nên x = 0 là tiệm cận đứng.
* \(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} =  + \infty \) và \(\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} =  - \infty \) nên \(x = 2\) là tiệm cận đứng.
* Tiệm cận xiên có dạng \(y = ax +b\)

\(\eqalign{
& a = \mathop {\lim }\limits_{x \to \pm \infty } {y \over x} = \mathop {\lim }\limits_{x \to \pm \infty } {{{x^3} + 2} \over {{x^3} - 2{x^2}}} \cr&= \mathop {\lim }\limits_{x \to \pm \infty } {{1 + {2 \over {{x^3}}}} \over {1 - {2 \over x}}} = 1 \cr 
& b = \mathop {\lim }\limits_{x \to \pm \infty } \left( {y - x} \right)\cr& = \mathop {\lim }\limits_{x \to \pm \infty } \left( {{{{x^3} + 2} \over {{x^2} - 2x}} - x} \right) \cr&= \mathop {\lim }\limits_{x \to \pm \infty } {{2{x^2} + 2} \over {{x^2} - 2x}} \cr&= \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{2 + \frac{2}{{{x^2}}}}}{{1 - \frac{2}{x}}}= 2 \cr} \)

Đường thẳng \(y = x + 2\) là tiệm cận xiên của đồ thị.

LG c

\(\,\,{{{x^3} + x + 1} \over {{x^2} - 1\,}}\,\,;\)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash \left\{ { - 1;1} \right\}\)
* \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} =  + \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} =  - \infty \) nên \(x = -1\) là tiệm cận đứng .
\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} =  - \infty \) và \(\mathop {\lim }\limits_{x \to {1^ - }} y =  - \infty \) nên \(x = 1\) là tiệm cận đứng.
* Tiệm cận xiên có dạng \(y = ax + b\)

\(\eqalign{
& a = \mathop {\lim }\limits_{x \to \pm \infty } {y \over x} = \mathop {\lim }\limits_{x \to \pm \infty } {{{x^3} + x + 1} \over {x\left( {{x^2} - 1} \right)}}\cr& = \mathop {\lim }\limits_{x \to \pm \infty } {{1 + {1 \over {{x^2}}} + {1 \over {{x^3}}}} \over {1 - {1 \over {{x^2}}}}} = 1 \cr 
& b = \mathop {\lim }\limits_{x \to \pm \infty } \left( {y - x} \right) \cr&= \mathop {\lim }\limits_{x \to \pm \infty } \left( {{{{x^3} + x + 1} \over {{x^2} - 1}}-x} \right) \cr&= \mathop {\lim }\limits_{x \to \pm \infty } {{2x + 1} \over {{x^2} - 1}} = 0 \cr} \)

\( \Rightarrow y = x\) là tiệm cận xiên.

LG d

\(\,\,{{{x^2} + x + 1} \over { - 5{x^2} - 2x + 3}}\)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash \left\{ { - 1;{3 \over 5}} \right\}\)
* Vì \(\mathop {\lim }\limits_{x \to  \pm \infty } y = \mathop {\lim }\limits_{x \to  \pm \infty } {{1 + {1 \over x} + {1 \over {{x^2}}}} \over { - 5 - {2 \over x} + {3 \over {{x^2}}}}} =  - {1 \over 5}\) nên \(y =  - {1 \over 5}\) là tiệm cận ngang.
* \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} =  + \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y =  - \infty \) nên \(x = -1\) là tiệm cận đứng.
\(\mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ + }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} =  - \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ - }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} =  + \infty \) nên \(x = {3 \over 5}\) là tiệm cận đứng.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi