Bài 12. Tổng các góc trong một tam giác
Bài 15. Các trường hợp bằng nhau của tam giác vuông
Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
Bài tập cuối chương IV
Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Luyện tập chung trang 66, 67, 68
Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Luyện tập chung trang 76
Luyện tập chung trang 60, 61, 62
Đề bài
Bài 4 (4.32). Cho tam giác MBC vuông tại M có \(\widehat B = {60^o}\). Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.
Phương pháp giải - Xem chi tiết
Tam giác đều là tam giác có ba cạnh bằng nhau và ba góc bằng nhau.
Lời giải chi tiết
GT | \(\Delta MBC,\widehat M = {90^o},\widehat B = {60^o},MA = MB\) A thuộc tia đối của tia MB |
KL | \(\Delta ABC\)đều. |
Ta thấy hai tam giác MBC và MAC vuông tại M và có:
MB = MA (theo giả thiết)
MC là cạnh chung
Vậy \(\Delta MBC = \Delta MAC\)(hai cạnh góc vuông). Do đó \(\widehat A = \widehat B = {60^o}\)
Suy ra \(\widehat C = {180^o} - \widehat A - \widehat B = {60^o}\)
Vậy ABC là tam giác có ba góc bằng nhau nên đây là tam giác đều.
Chủ đề 5: Giải quyết vấn đề với sự trợ giúp của máy tính
Ngữ âm
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Khoa học tự nhiên lớp 7
Bài 7. Thơ
Unit 4: Community Services
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7