Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một hàm số đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Câu hỏi và bài tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập trắc nghiệm khách quan chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Toán 12 Nâng cao
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
Bài 1. Nguyên hàm
Bài 2. Một số phương pháp tìm nguyên hàm
Bài 3. Tích phân
Bài 4. Một số phương pháp tích phân
Bài 5. Ứng dụng tích phân để tính diện tích hình phẳng
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
Bài tập trắc nghiệm khách quan chương III - Nguyên hàm, tích phân và ứng dụng - Toán 12 Nâng cao
LG a
Khảo sát sự biến thiên và vẽ đồ thị của hàm số: \(y = - {x^4} + 2{x^2} - 2\)
Lời giải chi tiết:
TXĐ: \(D =\mathbb R\)
\(\eqalign{
& \mathop {\lim }\limits_{x \to \pm \infty } y = - \infty \cr
& y' = - 4{x^3} + 4x = - 4x\left( {{x^2} - 1} \right)\cr&y' = 0 \Leftrightarrow \left[ \matrix{
x = 0,\,\,\,\,\,\,y\left( 0 \right) = - 2 \hfill \cr
x = \pm 1,\,\,\,\,y\left( { \pm 1} \right) = - 1 \hfill \cr} \right. \cr} \)
Bảng biến thiên:
Hàm đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\);
Hàm số nghịch biến trên các khoảng \((-1;0)\) và \(\left( {1; + \infty } \right)\)
Hàm số đạt cực đại tại các điểm \(x = -1 ; x = 1\);
Giá trị cực đại \(y\left( { \pm 1} \right) = - 1\). Hàm số đạt cực tiểu tại điểm \(x = 0\), giá trị cực tiểu \(y(0) = -2\).
\(\eqalign{
& y'' = - 12{x^2} + 4 = - 4\left( {3{x^2} - 1} \right) \cr
& y'' = 0 \Leftrightarrow x = \pm {1 \over {\sqrt 3 }}\cr&y\left( { \pm {1 \over {\sqrt 3 }}} \right) = {{ - 13} \over 9} \cr} \)
Xét dấu y”
Đồ thị có hai điểm uốn \({I_1}\left( { - {1 \over {\sqrt 3 }}; - {{13} \over 9}} \right)\) và \({I_2}\left( {{1 \over {\sqrt 3 }}; - {{13} \over 9}} \right)\)
Điểm đặc biệt \(x = 2 \Rightarrow y = - 10\)
Đồ thị nhận trục tung làm trục đối xứng.
LG b
Tùy theo các giá trị của m, hãy biện luận số nghiệm của phương trình \( - {x^4} + 2{x^2} - 2 = m\).
Lời giải chi tiết:
Số nghiệm của phương trình chính là số giao điểm của đồ thị (C) hàm số \(y = - {x^4} + 2{x^2} - 2\) với đường thẳng \(y = m\).
Dựa vào đồ thị ta có kết quả sau:
- Nếu \(m < -2\) thì phương trình có \(2\) nghiệm;
- Nếu \(m = -2\) thì phương trình có \(3\) nghiệm;
- Nếu \(-2 < m < -1\) thì phương trình có \(4\) nghiệm;
- Nếu \(m = -1\) thì phương trình có \(2\) nghiệm;
- Nếu \(m> -1\) thì phương trình vô nghiệm.
Vậy,
m > -1: Phương trình (1) vô nghiệm.
\(m = - 1\) hoặc \(m < - 2\) thì phương trình (1) có 2 nghiệm.
m=−2: Phương trình (1) có 3 nghiệm.
-2 < m < -1 phương trình (1) có 4 nghiệm.
LG c
Viết phương trình tiếp tuyến tại các điểm uốn của đồ thị ở câu a)
Lời giải chi tiết:
Đồ thị có hai điểm uốn \({I_1}\left( { - {1 \over {\sqrt 3 }}; - {{13} \over 9}} \right)\) và \({I_2}\left( {{1 \over {\sqrt 3 }}; - {{13} \over 9}} \right)\)
Ta có: \(y'\left( { - \frac{1}{{\sqrt 3 }}} \right) = - 4.{\left( { - \frac{1}{{\sqrt 3 }}} \right)^3} + 4.\left( { - \frac{1}{{\sqrt 3 }}} \right) \) \(= - \frac{8}{{3\sqrt 3 }}\)
phương trình tiếp tuyến của đồ thị \({I_1}\) là:
\(\eqalign{
& y + {{13} \over 9} = y'\left( { - {1 \over {\sqrt 3 }}} \right)\left( {x + {1 \over {\sqrt 3 }}} \right) \cr&\Leftrightarrow y + {{13} \over 9} = {{ - 8} \over {3\sqrt 3 }}\left( {x + {1 \over {\sqrt 3 }}} \right) \cr
& \Leftrightarrow y = {{ - 8} \over {3\sqrt 3 }}x - {7 \over 3} \cr} \)
Lại có: \(y'\left( { \frac{1}{{\sqrt 3 }}} \right) = - 4.{\left( { \frac{1}{{\sqrt 3 }}} \right)^3} + 4.\left( { \frac{1}{{\sqrt 3 }}} \right) \) \(= \frac{8}{{3\sqrt 3 }}\)
Tương tự tiếp tuyến của đồ thị \({I_2}\) là :
\(\eqalign{
& y + {{13} \over 9} = y'\left( { {1 \over {\sqrt 3 }}} \right)\left( {x - {1 \over {\sqrt 3 }}} \right) \cr&\Leftrightarrow y + {{13} \over 9} = {{ 8} \over {3\sqrt 3 }}\left( {x - {1 \over {\sqrt 3 }}} \right) \cr
& \Leftrightarrow y = {{ 8} \over {3\sqrt 3 }}x - {7 \over 3} \cr} \)
Vậy 2 tiếp tuyến là \(y = {-8 \over {3\sqrt 3 }}x - {7 \over 3}\) và \(y = {8 \over {3\sqrt 3 }}x - {7 \over 3}\)
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Vật lí lớp 12
ĐỊA LÍ KINH TẾ
ĐỀ THI HỌC KÌ 2 - ĐỊA LÍ 12
ĐỀ THI THỬ THPT QUỐC GIA MÔN VẬT LÍ
CHƯƠNG 6. BẰNG CHỨNG VÀ CƠ CHẾ TIẾN HÓA