Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một hàm số đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Câu hỏi và bài tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập trắc nghiệm khách quan chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Toán 12 Nâng cao
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
Bài 1. Nguyên hàm
Bài 2. Một số phương pháp tìm nguyên hàm
Bài 3. Tích phân
Bài 4. Một số phương pháp tích phân
Bài 5. Ứng dụng tích phân để tính diện tích hình phẳng
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
Bài tập trắc nghiệm khách quan chương III - Nguyên hàm, tích phân và ứng dụng - Toán 12 Nâng cao
LG a
Khảo sát sự biến thiên và vẽ đồ thị của hàm số:
Lời giải chi tiết:
TXĐ:
Bảng biến thiên:
Hàm đồng biến trên các khoảng
Hàm số nghịch biến trên các khoảng
Hàm số đạt cực đại tại các điểm
Giá trị cực đại
Xét dấu y”
Đồ thị có hai điểm uốn
Điểm đặc biệt
Đồ thị nhận trục tung làm trục đối xứng.
LG b
Tùy theo các giá trị của m, hãy biện luận số nghiệm của phương trình
Lời giải chi tiết:
Số nghiệm của phương trình chính là số giao điểm của đồ thị (C) hàm số
Dựa vào đồ thị ta có kết quả sau:
- Nếu
- Nếu
- Nếu
- Nếu
- Nếu
Vậy,
m > -1: Phương trình (1) vô nghiệm.
m=−2: Phương trình (1) có 3 nghiệm.
-2 < m < -1 phương trình (1) có 4 nghiệm.
LG c
Viết phương trình tiếp tuyến tại các điểm uốn của đồ thị ở câu a)
Lời giải chi tiết:
Đồ thị có hai điểm uốn
Ta có:
phương trình tiếp tuyến của đồ thị
Lại có:
Tương tự tiếp tuyến của đồ thị
Vậy 2 tiếp tuyến là
Unit 4. School Education System
Đề ôn tập học kì 1 – Có đáp án và lời giải
Unit 4: School Education System - Hệ thống giáo dục nhà trường
Đề thi học kì 1
Đề khảo sát chất lượng đầu năm