Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một hàm số đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Câu hỏi và bài tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập trắc nghiệm khách quan chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Toán 12 Nâng cao
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
Bài 1. Nguyên hàm
Bài 2. Một số phương pháp tìm nguyên hàm
Bài 3. Tích phân
Bài 4. Một số phương pháp tích phân
Bài 5. Ứng dụng tích phân để tính diện tích hình phẳng
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
Bài tập trắc nghiệm khách quan chương III - Nguyên hàm, tích phân và ứng dụng - Toán 12 Nâng cao
Đề bài
Khoảng 200 năm trước, hai nhà khoa học Pháp là Clô-zi-ut (Clausius) và Cla-pay-rông (Clapeyron) đã thấy rằng áp lực P của hơi nước (tính bằng milimét thủy ngân, viết tắt là mmHg) gây ra khi nó chiếm khoảng trống phía trên của mặt nước chứa trong một bình kín được tính theo công thức: \(P=a.{10^{{k \over {t + 273}}}}\), trong đó t là nhiệt độ C của nước, a và k là những hằng số. Cho biết \(k \approx - 2258,624\).
a) Tính a biết rằng khi nhiệt độ của nước là \(100^0C\) thì áp lực của hơi nước là 760 mmHg (tính chính xác đến hàng phần chục).
b) Tính áp lực của hơi nước khi nhiệt độ của nước là \({40^0}C\) (tính chính xác đến hàng phần chục).
Lời giải chi tiết
a) Khi nhiệt độ của nước là t = \({100^0}C\) thì P = 760 mmHg.
t = \({100^0}C\), P = 760 mmHg, \(k \approx - 2258,624\) nên ta có phương trình:
\(760 = a{.10^{{{ - 2258,624} \over {100+273}}}}\).
\(\begin{array}{l}
\Leftrightarrow 760 = a{.10^{\frac{{ - 2258,624}}{{373}}}}\\
\Leftrightarrow a = \frac{{760}}{{{{10}^{\frac{{ - 2258,624}}{{373}}}}}} = 863188841,4
\end{array}\)
Vậy \(a \approx 863188841,4\).
b) Ta có: \(t = {40^0}C;a = 863188841,4\), \(k \approx - 2258,624\) nên:
\(P = 863188841,4.{10^{{{ - 2258,624} \over {40+273}}}} \approx 52,5\) mmHg.
Unit 9. Choosing a Career
Chương 2. CACBOHIĐRAT
Bài 24. Vấn đề phát triển ngành thủy sản và lâm nghiệp
PHẦN BẢY. SINH THÁI HỌC
CHƯƠNG 9. QUẦN XÃ SINH VẬT