GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 55 trang 50 SGK giải tích 12 nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số \(y = x - {2 \over {x - 1}}\)

Lời giải chi tiết:

Tập xác định: \(D = R\backslash \left\{ 1 \right\}\)

\(y' = 1 + {2 \over {{{\left( {x - 1} \right)}^2}}} > 0,\forall x \in D\)

Vậy hàm số đồng biến trên khoảng \(( - \infty ;1)\) và \((1; + \infty )\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ - }} y = + \infty \cr 
& \mathop {\lim }\limits_{x \to {1^ + }} y = - \infty \cr} \)

Do đó \(x=1\) là tiệm cận đứng.

\(\mathop {\lim }\limits_{x \to  \pm \infty } (y - x) = \mathop {\lim }\limits_{x \to  \pm \infty } \left( { - {2 \over {x - 1}}} \right) = 0\)

Vậy \(y=x\) là tiệm cận xiên.

Bảng biến thiên:

 

Đồ thị giao \(Ox\) tại \((-1;0),(2;0)\)

Đồ thị giao \(Oy\) tại \((0;2)\)

LG b

Viết phương trình tiếp tuyến của đồ thị hàm số đã cho biết rằng tiếp tuyến đó đi qua điểm \((3;3)\).

Lời giải chi tiết:

Ta có: \(y' = 1 + {2 \over {{{\left( {x - 1} \right)}^2}}}\)
Phương trình tiếp tuyến với đồ thị hàm số đã cho tại điểm \(M\left( {{x_o};{{x_o} - {2 \over {{x_o} - 1}}}} \right) \in \left( C \right)\) là:

\(\left( d \right):\,y - {x_o} + {2 \over {{x_o} - 1}} \) \(= \left[ {1 + {2 \over {{{\left( {{x_o} - 1} \right)}^2}}}} \right]\left( {x - {x_o}} \right)\,\left( {x_o \ne 1} \right)\)

Vì \(\left( {3;3} \right) \in d\) nên \(3 - {x_o} + {2 \over {{x_o} - 1}} = {{{{\left( {{x_o} - 1} \right)}^2} + 2} \over {{{\left( {{x_o} - 1} \right)}^2}}}\left( {3 - {x_o}} \right)\)

\(\eqalign{
& \Leftrightarrow \left( {3 - {x_o}} \right){\left( {{x_o} - 1} \right)^2} + 2\left( {{x_o} - 1} \right) \cr&= \left( {{x_o^2} - 2{x_o} + 3} \right)\left( {3 - {x_o}} \right) \cr} \)

\(\begin{array}{l}
\Leftrightarrow \left( {3 - {x_o}} \right)\left( {x_o^2 - 2{x_o} + 1} \right) + 2{x_o} - 2\\
= 3x_o^2 - 6{x_o} + 9 - x_o^3 + 2x_o^2 - 3{x_o}\\
\Leftrightarrow 3x_o^2 - x_o^3 - 6{x_o} + 2x_o^2 + 3 - {x_o} + 2{x_o} - 2\\
= 3x_o^2 - 6{x_o} + 9 - x_o^3 + 2x_o^2 - 3{x_o}\\
\Leftrightarrow 4{x_o} - 8 = 0\\
\Leftrightarrow {x_o} = 2\\
\Rightarrow {y_o} = 2 - \frac{2}{{2 - 1}} = 0
\end{array}\)

\( \Rightarrow M\left( {2;0} \right)\)

Vậy phương trình tiếp tuyến cần tìm là: \(y = 3\left( {x - 2} \right)\) hay \(y = 3x - 6.\)

Cách khác:

Gọi phương trình đường thẳng (d) có hệ số góc k đi qua A(3; 3) có dạng

y-3=k(x-3) <=> y=k(x-3)+3

(d) là tiếp tuyến của đồ thị hàm số khi và chỉ khi hệ phương trình sau có nghiệm

Thế (2) vào (1) ta được:

\(\begin{array}{l}
\frac{{{x^2} - x - 2}}{{x - 1}} = \left( {1 + \frac{2}{{{{\left( {x - 1} \right)}^2}}}} \right)\left( {x - 3} \right) + 3\\
\Leftrightarrow \frac{{{x^2} - x - 2}}{{x - 1}} = \frac{{{{\left( {x - 1} \right)}^2} + 2}}{{{{\left( {x - 1} \right)}^2}}}\left( {x - 3} \right) + 3\\
\Leftrightarrow \frac{{{x^2} - x - 2}}{{x - 1}} = \frac{{\left( {{x^2} - 2x + 3} \right)\left( {x - 3} \right)}}{{{{\left( {x - 1} \right)}^2}}} + 3\\
\Leftrightarrow \frac{{\left( {{x^2} - x - 2} \right)\left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}\\
= \frac{{\left( {{x^2} - 2x + 3} \right)\left( {x - 3} \right)}}{{{{\left( {x - 1} \right)}^2}}} + \frac{{3{{\left( {x - 1} \right)}^2}}}{{{{\left( {x - 1} \right)}^2}}}\\
\Rightarrow \left( {{x^2} - x - 2} \right)\left( {x - 1} \right)\\
= \left( {{x^2} - 2x + 3} \right)\left( {x - 3} \right) + 3\left( {{x^2} - 2x + 1} \right)\\
\Leftrightarrow {x^3} - {x^2} - 2x - {x^2} + x + 2\\
= {x^3} - 2{x^2} + 3x - 3{x^2} + 6x - 9 + 3{x^2} - 6x + 3\\
\Leftrightarrow - 4x + 8 = 0\\
\Leftrightarrow x = 2
\end{array}\)

* Với x = 2 thay vào (2) ta được k = 3.

Vậy phương trình tiếp tuyến là

y = 3(x- 3) + 3 hay y = 3x – 6

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved