Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một hàm số đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Câu hỏi và bài tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập trắc nghiệm khách quan chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Toán 12 Nâng cao
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
Bài 1. Nguyên hàm
Bài 2. Một số phương pháp tìm nguyên hàm
Bài 3. Tích phân
Bài 4. Một số phương pháp tích phân
Bài 5. Ứng dụng tích phân để tính diện tích hình phẳng
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
Bài tập trắc nghiệm khách quan chương III - Nguyên hàm, tích phân và ứng dụng - Toán 12 Nâng cao
LG a
Khảo sát sự biến thiên và vẽ đồ thị của hàm số: \(y = {{2x - 1} \over {x + 1}}\)
Lời giải chi tiết:
Tập xác định: \(D = R\backslash \left\{ { - 1} \right\}\)
\(y' = {3 \over {{{(x + 1)}^2}}}>0\,\,\forall x\in D\)
Hàm số đồng biến trên khoảng \(( - \infty ; - 1)\) và \(( - 1; + \infty )\)
Hàm số không có cực trị
Giới hạn
\(\mathop {\lim }\limits_{x \to \pm \infty } y = 2\)
Tiệm cận đứng \(y=2\)
\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ - }} y = + \infty \cr
& \mathop {\lim }\limits_{x \to {1^ + }} y = - \infty \cr} \)
Tiệm cận đứng: \(x=-1\)
Bảng biến thiên:
Đồ thị giao \(Ox\) tại điểm \(\left( {{1 \over 2};0} \right)\)
Đồ thị giao \(Oy\) tại điểm \((0;-1)\)
Đồ thị hàm số nhận điểm I(-1;2) làm tâm đối xứng.
LG b
Với các giá trị nào của \(m\), đường thẳng \(\left( {{d_m}} \right)\) đi qua điểm \(A(-2;2)\) và có hệ số góc \(m\) cắt đồ thị của hàm số đã cho:
• Tại hai điểm phân biệt?
• Tại hai điểm thuộc hai nhánh của đồ thị?
Lời giải chi tiết:
Phương trình đường thẳng \(\left( {{d_m}} \right)\) qua điểm \(A(-2;2)\) có hệ số góc \(m\) là:
\(y - 2 = m\left( {x + 2} \right)\) hay \(y = mx + 2m + 2\)
Hoành độ giao điểm của đường thẳng \(\left( {{d_m}} \right)\) và đường cong đã cho là nghiệm phương trình:
\(\eqalign{
& mx + 2m + 2 = {{2x - 1} \over {x + 1}} \cr
& \Rightarrow \left( {mx + 2m + 2} \right)\left( {x + 1} \right) = 2x - 1\,\,\,\,\,\left( 1 \right) \cr
& \Leftrightarrow m{x^2} + 3mx + 2m + 3 = 0\,\,\,\left( 2 \right) \cr} \)
• Đường thẳng \(\left( {{d_m}} \right)\) cắt đường cong tại hai điểm phân biệt khi và chỉ khi phương trình \((2)\) có hai nghiệm phân biệt khác \(-1\), tức là
\(\begin{array}{l}
\left\{ \begin{array}{l}
a \ne 0\\
\Delta > 0\\
f\left( { - 1} \right) \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m \ne 0\\
9{m^2} - 4m\left( {2m + 3} \right) > 0\\
m.{\left( { - 1} \right)^2} + 3m.\left( { - 1} \right) + 2m + 3 \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m \ne 0\\
{m^2} - 12m > 0\\
3 \ne 0\left( {\text{đúng}} \right)
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ne 0\\
\left[ \begin{array}{l}
m > 12\\
m < 0
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
m > 12\\
m < 0
\end{array} \right.(*)
\end{array}\)
• Hai nhánh của đường cong nằm về hai phía của đường tiệm cận đứng \(x = -1\) của đồ thị.
\(\Leftrightarrow\) Đường thẳng \(\left( {{d_m}} \right)\) cắt đường cong tại hai điểm thuộc hai nhánh của nó
\(\Leftrightarrow\) (1) có hai nghiệm \({x_1},\,{x_2}\) thỏa mãn \({x_1} < - 1 < {x_2}\)
\(\eqalign{
& \Leftrightarrow {x_1} + 1 < 0 < {x_2} + 1\cr&\Leftrightarrow \left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) < 0 \cr
& \Leftrightarrow {x_1}.{x_2} + {x_1} + {x_2} + 1 < 0 \cr&\Leftrightarrow {{2m + 3} \over m} - {{3m} \over m} + 1 < 0 (\text{ Vi-et })\cr
& \Leftrightarrow {3 \over m} < 0 \cr} \)
Kết hợp với (*) được \(m < 0\)
Vậy với \(m < 0\) thì \(\left( {{d_m}} \right)\) cắt (C) tại hai điểm phân biệt thuộc hai nhánh của đồ thị.
Cách khác:
\(\Leftrightarrow\) (1) có hai nghiệm \({x_1},\,{x_2}\) thỏa mãn \({x_1} < - 1 < {x_2}\)
⇔ af(-1)<0
⇔ m(m(-1)2+3m(-1)+2m+3)<0
⇔ 3m<0 ⇔ m < 0
Vậy với m ∈(-∞;0) thì đường thẳng (dm) sẽ cắt đồ thị (C) tại 2 điểm phân biệt ∈ 2 nhánh đồ thị.
Đề thi học kì 1
Tải 10 đề kiểm tra 15 phút - Chương 3 – Hóa học 12
Chương 6. Bằng chứng và cơ chế tiến hóa
Unit 13. The 22nd SEA Games
Chương 9. Hóa học với các vấn đề kinh tế, xã hội, môi trường