Bài 6 trang 110 SGK Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho hai đường thẳng

\(d:\left\{ \matrix{
x = 7 + 3t \hfill \cr 
y = 2 + 2t \hfill \cr 
z = 1 - 2t \hfill \cr} \right.\) và \(d':{{x - 1} \over 2} = {{y + 2} \over { - 3}} = {{z - 5} \over 4}\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Chứng minh rằng d và d’ đồng phẳng. Viết phương trình mặt phẳng (P) chứa chúng.

Lời giải chi tiết:

Đường thẳng d đi qua \(M\left( {7;2;1} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {3;2; - 2} \right)\).

Đường thẳng d’ đi qua \(M'\left( {1; - 2;5} \right)\) và có vectơ chỉ phương \(\overrightarrow {u'}  = \left( {2; - 3;4} \right)\).
Ta có \(\overrightarrow {MM'}  = \left( { - 6; - 4;4} \right)\)

\(\eqalign{
& \left[ {\overrightarrow u ;\overrightarrow {u'} } \right] \cr &= \left( {\left| \matrix{
2\,\,\,\,\, - 2 \hfill \cr 
- 3\,\,\,\,\,4 \hfill \cr} \right|;\left| \matrix{
- 2\,\,\,\,3 \hfill \cr 
4\,\,\,\,\,\,\,2 \hfill \cr} \right|;\left| \matrix{
3\,\,\,\,\,\,\,\,2 \hfill \cr 
2\,\,\,\, - 3 \hfill \cr} \right|} \right) \cr &= \left( {2; - 16; - 13} \right) \cr 
& \Rightarrow \left[ {\overrightarrow u ;\overrightarrow {u'} } \right].\overrightarrow {MM'} \cr &= - 2.6 + 16.4 - 13.4 = 0 \cr} \)

Vậy d và d’ đồng phẳng.

Mà \(\overrightarrow u \) và \(\overrightarrow {u'} \) không cùng phương nên d và d’ cắt nhau.

Mp(P) chứa d và d’ đi qua \(M\left( {7;2;1} \right)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( {2; - 16; - 13} \right)\) do đó (P) có phương trình là:

\(2\left( {x - 7} \right) - 16\left( {y - 2} \right) - 13\left( {z - 1} \right) = 0 \) \(\Leftrightarrow 2x - 16y - 13z + 31 = 0\)

LG b

Tính thể tích hình tứ diện giới hạn bởi mp(P) và ba mặt phẳng tọa độ.

Lời giải chi tiết:

Giao điểm của mp(P) với các trục tọa độ là: \(A\left( {{{ - 31} \over 2};0;0} \right)\,\,;\,\,B\left( {0;{{31} \over {16}};0} \right)\,\,;\) \(C\left( {0;0;{{31} \over {13}}} \right)\)
Thể tích tứ diện OABC là \(C = {1 \over 6}OA.OB.OC = {1 \over 6}.{{31} \over 2}.{{31} \over {16}}.{{31} \over {13}} \) \(= {{{{31}^3}} \over {2496}}.\)

LG c

Viết phương trình mặt cầu ngoại tiếp tứ diện nói trên.

Lời giải chi tiết:

Mặt cầu ngoại tiếp tứ diện OABC đi qua O nên có phương trình có dạng:

\(\left( S \right):{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz = 0\)

\(A,B,C \in \left( S \right) \)

\(\Rightarrow  \left\{ \begin{array}{l}
{\left( { - \frac{{31}}{2}} \right)^2} - 2a.\left( { - \frac{{31}}{2}} \right) = 0\\
{\left( {\frac{{31}}{{16}}} \right)^2} - 2b.\frac{{31}}{{16}} = 0\\
{\left( {\frac{{31}}{{13}}} \right)^2} - 2c.\frac{{31}}{{13}} = 0
\end{array} \right.\)

\(\Rightarrow \left\{ \matrix{
a = - {{31} \over 4} \hfill \cr 
b = {{31} \over {32}} \hfill \cr 
c = {{31} \over {26}} \hfill \cr} \right.\)

Vậy \(\left( S \right):{x^2} + {y^2} + {z^2} + {{31} \over 2}x - {{31} \over {16}}y - {{31} \over {13}}z = 0\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved