Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Cho hai đường thẳng
\(d:\left\{ \matrix{
x = 7 + 3t \hfill \cr
y = 2 + 2t \hfill \cr
z = 1 - 2t \hfill \cr} \right.\) và \(d':{{x - 1} \over 2} = {{y + 2} \over { - 3}} = {{z - 5} \over 4}\).
LG a
Chứng minh rằng d và d’ đồng phẳng. Viết phương trình mặt phẳng (P) chứa chúng.
Lời giải chi tiết:
Đường thẳng d đi qua \(M\left( {7;2;1} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {3;2; - 2} \right)\).
Đường thẳng d’ đi qua \(M'\left( {1; - 2;5} \right)\) và có vectơ chỉ phương \(\overrightarrow {u'} = \left( {2; - 3;4} \right)\).
Ta có \(\overrightarrow {MM'} = \left( { - 6; - 4;4} \right)\)
\(\eqalign{
& \left[ {\overrightarrow u ;\overrightarrow {u'} } \right] \cr &= \left( {\left| \matrix{
2\,\,\,\,\, - 2 \hfill \cr
- 3\,\,\,\,\,4 \hfill \cr} \right|;\left| \matrix{
- 2\,\,\,\,3 \hfill \cr
4\,\,\,\,\,\,\,2 \hfill \cr} \right|;\left| \matrix{
3\,\,\,\,\,\,\,\,2 \hfill \cr
2\,\,\,\, - 3 \hfill \cr} \right|} \right) \cr &= \left( {2; - 16; - 13} \right) \cr
& \Rightarrow \left[ {\overrightarrow u ;\overrightarrow {u'} } \right].\overrightarrow {MM'} \cr &= - 2.6 + 16.4 - 13.4 = 0 \cr} \)
Vậy d và d’ đồng phẳng.
Mà \(\overrightarrow u \) và \(\overrightarrow {u'} \) không cùng phương nên d và d’ cắt nhau.
Mp(P) chứa d và d’ đi qua \(M\left( {7;2;1} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( {2; - 16; - 13} \right)\) do đó (P) có phương trình là:
\(2\left( {x - 7} \right) - 16\left( {y - 2} \right) - 13\left( {z - 1} \right) = 0 \) \(\Leftrightarrow 2x - 16y - 13z + 31 = 0\)
LG b
Tính thể tích hình tứ diện giới hạn bởi mp(P) và ba mặt phẳng tọa độ.
Lời giải chi tiết:
Giao điểm của mp(P) với các trục tọa độ là: \(A\left( {{{ - 31} \over 2};0;0} \right)\,\,;\,\,B\left( {0;{{31} \over {16}};0} \right)\,\,;\) \(C\left( {0;0;{{31} \over {13}}} \right)\)
Thể tích tứ diện OABC là \(C = {1 \over 6}OA.OB.OC = {1 \over 6}.{{31} \over 2}.{{31} \over {16}}.{{31} \over {13}} \) \(= {{{{31}^3}} \over {2496}}.\)
LG c
Viết phương trình mặt cầu ngoại tiếp tứ diện nói trên.
Lời giải chi tiết:
Mặt cầu ngoại tiếp tứ diện OABC đi qua O nên có phương trình có dạng:
\(\left( S \right):{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz = 0\)
Vì
\(A,B,C \in \left( S \right) \)
\(\Rightarrow \left\{ \begin{array}{l}
{\left( { - \frac{{31}}{2}} \right)^2} - 2a.\left( { - \frac{{31}}{2}} \right) = 0\\
{\left( {\frac{{31}}{{16}}} \right)^2} - 2b.\frac{{31}}{{16}} = 0\\
{\left( {\frac{{31}}{{13}}} \right)^2} - 2c.\frac{{31}}{{13}} = 0
\end{array} \right.\)
\(\Rightarrow \left\{ \matrix{
a = - {{31} \over 4} \hfill \cr
b = {{31} \over {32}} \hfill \cr
c = {{31} \over {26}} \hfill \cr} \right.\)
Vậy \(\left( S \right):{x^2} + {y^2} + {z^2} + {{31} \over 2}x - {{31} \over {16}}y - {{31} \over {13}}z = 0\)
Đề kiểm tra học kì 1
Đề khảo sát chất lượng đầu năm
Chương 7. Sự phát sinh và phát triển sự sống trên Trái Đất
Đề kiểm tra giữa học kì II - Hóa học 12
Luyện đề đọc hiểu - THCS