GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 61 trang 56 SGK giải tích 12 nâng cao

Đề bài

Một viên đạn được bắn ra với vận tốc ban đầu \({v_o} > 0\) từ một nòng súng đặt ở gốc tọa độ \(O\), nghiêng một góc  \(\alpha \) với mặt đất (nòng súng nằm trong mặt phẳng thẳng đứng \(Oxy\) và tạo với trục hoành \(Ox\) góc \(\alpha \) ). Biết quỹ đạo chuyển động của viên đạn là parabol.

\(\left( {{\gamma _\alpha }} \right):y =  - {g \over {2v_o^2}}\left( {1 + {{\tan }^2}\alpha } \right){x^2} + x\tan \alpha \) ( \(g\) là gia tốc trọng trường).

Chứng minh rằng với mọi \(\alpha  \in \left( {0;{\pi  \over 2}} \right),\,\left( {{\gamma _\alpha }} \right)\) luôn tiếp xúc với parabol \((P)\) có phương trình là: \(y =  - {g \over {2v_o^2}}{x^2} + {{v_o^2} \over {2g}}\) và tìm tọa độ tiếp điểm \((P)\) được gọi là parabol an toàn).

Phương pháp giải - Xem chi tiết

Hai đường cong f(x) và g(x) tiếp xúc nhau nếu hệ sau có nghiệm: 

\(\left\{ \begin{array}{l}
f\left( x \right) = g\left( x \right)\\
f'\left( x \right) = g'\left( x \right)
\end{array} \right.\)

Nghiệm của hệ trên chính là hoành độ tiếp điểm.

Lời giải chi tiết

Ta có:

\(y =  - {g \over {2v_o^2}}\left( {1 + {{\tan }^2}\alpha } \right){x^2} + x\tan \alpha\)

\( \Rightarrow y' =- {g \over {v_o^2}}\left( {1 + {{\tan }^2}\alpha } \right)x + \tan \alpha   \)

\(y =  - {g \over {2v_o^2}}{x^2} + {{v_o^2} \over {2g}}\)

\(\Rightarrow y'= - {g \over {v_o^2}}x\)

Hoành độ tiếp điểm của hai parabol là nghiệm của hệ phương trình:

\(\left\{ \matrix{
- {g \over {2v_o^2}}\left( {1 + {{\tan }^2}\alpha } \right){x^2} + x\tan \alpha = - {g \over {2v_o^2}}{x^2} + {{v_o^2} \over {2g}} \hfill \cr 
- {g \over {v_o^2}}\left( {1 + {{\tan }^2}\alpha } \right)x + \tan \alpha = - {g \over {v_o^2}}x \hfill \cr} \right.\)

Xét phương trình thứ hai trong hệ:

\(\begin{array}{l}
PT \Leftrightarrow - \frac{g}{{v_0^2}}\left( {1 + {{\tan }^2}\alpha } \right)x + \tan \alpha + \frac{g}{{v_0^2}}x = 0\\
\Leftrightarrow \frac{g}{{v_0^2}}x\left( { - 1 - {{\tan }^2}\alpha + 1} \right) + \tan \alpha = 0\\
\Leftrightarrow \frac{{ - g{{\tan }^2}\alpha }}{{v_0^2}}x = - \tan \alpha \\
\Leftrightarrow x = \left( { - \tan \alpha } \right):\frac{{ - g{{\tan }^2}\alpha }}{{v_0^2}}\\
\Leftrightarrow x = \frac{{v_0^2}}{{g\tan \alpha }}
\end{array}\)

Thay \(x = {{v_o^2} \over {g\tan \alpha }}\) và pt thứ nhất trong hệ ta thấy thỏa mãn.

Vậy với mọi \(\alpha  \in \left( {0;{\pi  \over 2}} \right)\) hai parabol luôn tiếp xúc với nhau.

Hoành độ tiếp điểm là \(x = {{v_o^2} \over {g\tan \alpha }}\). Tung độ của tiếp điểm là

\(y =  - {g \over {2v_o^2}}{\left( {{{v_o^2} \over {g\tan \alpha }}} \right)^2} + {{v_o^2} \over {2g}}\) \( = {{v_o^2} \over {2g}}\left( {1 - {1 \over {{{\tan }^2}\alpha }}} \right)={{v_o^2} \over {2g}}{\left( {1 - {{\cot }^2}\alpha } \right)} \)

Điểm \(\left( {{{v_o^2} \over {g\tan \alpha }};{{v_o^2} \over {2g}}\left( {1 - {{\cot }^2}\alpha } \right)} \right)\) là tiếp điểm của hai parabol với mọi \(\alpha  \in \left( {0;{\pi  \over 2}} \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey

Chatbot GPT

timi-livechat
Đặt câu hỏi