GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 77 trang 62 SGK giải tích 12 nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho hàm số: \(y = {{x - 4m} \over {2\left( {mx - 1} \right)}}.\,\,\,\left( {{H_m}} \right)\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m =1.

Lời giải chi tiết:

Với m=1 hàm số có dạng: \(y = {{x - 4} \over {2x - 2}}\)

Tập xác định: \(D = R\backslash \left\{ 1 \right\}\)

\(y' = {6 \over {{{\left( {2x - 2} \right)}^2}}} > 0\,,\forall x \in D\)

Hàm số đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\)

Hàm số không có cực trị

Giới hạn:

\(\mathop {\lim y}\limits_{x \to {1^ - }}  =  + \infty ;\mathop {\lim y}\limits_{x \to {1^ + }}  =  - \infty \)

Đường tiệm cận đứng: \(x=1\)

\(\mathop {\lim }\limits_{x \to  \pm \infty } y = {1 \over 2}\)

Đường tiệm cận ngang \(y={1 \over 2}\)

Bảng biến thiên:

Đồ thị:

Đồ thị giao Ox, Oy tại các điểm: (4;0); (0;2)

LG b

Chứng minh rằng với mọi \(m \ne  \pm {1 \over 2}\), các đường cong \(\left( {{H_m}} \right)\) đều đi qua hai điểm cố định A và B.

Lời giải chi tiết:

Gọi \(M\left( {{x_o};{y_o}} \right)\) là một điểm bất kì của mặt phẳng tọa độ.

Đường cong \(\left( {{H_m}} \right)\) đi qua điểm M khi và chỉ khi \((x_o;y_o)\) thỏa mãn \({{{x_o} - 4m} \over {2\left( {m{x_o} - 1} \right)}} = {y_o}\)

\( \Leftrightarrow \left\{ \matrix{
m{x_o} - 1 \ne 0 \hfill \cr 
2{y_o}\left( {m{x_o} - 1} \right) = {x_o} - 4m \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{
m{x_o} \ne 1\,\,\,\,\,\,\left( 1 \right) \hfill \cr 
\left( {2{x_o}{y_o} + 4} \right)m - {x_o} - 2{y_o} = 0\,\left( 2 \right) \hfill \cr} \right.\)

Mọi đường cong \(\left( {{H_m}} \right)\) với \(m \ne  \pm {1 \over 2}\) đều đi qua điểm \(M\left( {{x_o};{y_o}} \right)\) khi và chỉ khi hệ phương trình trên nghiệm đúng với mọi \(m \ne  \pm {1 \over 2}\).

Phương trình (2) nghiệm đúng với mọi m khi và chỉ khi

\(\left\{ \matrix{
2{x_o}{y_o} + 4 = 0 \hfill \cr 
-{x_o} - 2{y_o} = 0 \hfill \cr} \right. \)

\( \Leftrightarrow \left\{ \begin{array}{l}
2{x_o}{y_o} + 4 = 0\\
{x_o} = - 2{y_o}
\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}
- 4y_o^2 + 4 = 0\\
{x_o} = - 2{y_o}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{y_o} = \pm 1\\
{x_o} = - 2{y_o}
\end{array} \right.\)

\(\Leftrightarrow \left\{ \matrix{
{x_o} = - 2 \hfill \cr 
{y_o} = 1 \hfill \cr} \right.\,\,hoac\,\,\left\{ \matrix{
{x_o} = 2 \hfill \cr 
{y_o} = - 1 \hfill \cr} \right.\)

Vậy \(\left( {{x_o};{y_o}} \right)\) =(-2;1) và \(\left( {{x_o};{y_o}} \right)\)=(2;-1)

Ta kiểm tra điều kiện (1)
• Với \({x_o} =  - 2\), ta có \(m \ne  - {1 \over 2}\)

•Với \({x_o} = 2\), ta có \(m \ne {1 \over 2}\)

Vậy mọi đường cong \(\left( {{H_m}} \right)\) với \(m \ne  \pm {1 \over 2}\) đều đi qua hai điểm cố định A(-2; 1) và B(2; - 1).

LG c

Chứng minh rằng tích các hệ số góc của tiếp tuyến với (\(H_m\)) tại hai điểm A và B là một hằng số khi m biến thiên.

Lời giải chi tiết:

Ta có \(y' = {{4{m^2} - 1} \over {2{{\left( {mx - 1} \right)}^2}}}\)

Hệ số góc tiếp tuyến với \(\left( {{H_m}} \right)\) tại A(-2; 1) và \(B(2; - 1)\) là y’(-2) và y'(2).

Ta có tích hai hệ số góc tiếp tuyến tại A và B là:

\(y'\left( { - 2} \right).y'\left( 2 \right) \) \(= {{4{m^2} - 1} \over {2{{\left( {-2m - 1} \right)}^2}}}.{{4{m^2} - 1} \over {2{{\left( {2m - 1} \right)}^2}}} \) \(= {1 \over 4}\) là hằng số.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved