GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 79 trang 62 SGK giải tích 12 nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hàm số : \(y = f\left( x \right) = x + {1 \over x}\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

Lời giải chi tiết:

Tập xác định: \(D = R\backslash \left\{ 0 \right\}\)

\(\eqalign{
& y' = 1 - {1 \over {{x^2}}} = {{{x^2} - 1} \over {{x^2}}} \cr 
& y' = 0 \Leftrightarrow x = \pm 1 \cr} \)

Hàm số đồng biến trên các khoảng: \(\left( { - \infty ; - 1} \right),\left( {1; + \infty } \right)\)

Hàm số nghịch biến trên các khoảng: \(\left( { - 1;0} \right),\left( {0;1} \right)\)

+) Cực trị:

 Hàm số đạt cực đại tại: \(x=-1 ; y(-1)= -2\)

Hàm số đạt cực tiểu tại: \(x=1;y(1)=2\)

+) Giới hạn:

\(\mathop {\lim y}\limits_{x \to {0^ - }}  =  - \infty ;\mathop {\lim y}\limits_{x \to {0^ + }}  =  + \infty \)

Tiệm cận đứng: \(x=0\)

\(\mathop {\lim }\limits_{x \to  \pm \infty } y =  \pm \infty \)

\(\mathop {\lim }\limits_{x \to \infty } (y - x) = \mathop {\lim }\limits_{x \to \infty } {1 \over x} = 0\)

Tiệm cận xiên: \(y=x\)

Bảng biến thiên:

Đồ thị:

LG b

Tiếp tuyến của đường cong (C) tại điểm \(M\left( {{x_o};f\left( {{x_o}} \right)} \right)\) cắt tiệm cận đứng và tiệm cận xiên tại hai điểm A và B. Chứng minh rằng M là trung điểm của đoạn thẳng AB và tam giác OAB có diện tích không phụ thuộc vào vị trí điểm M trên đường cong (C).

Lời giải chi tiết:

Tiệm cận đứng x = 0; Tiệm cận xiên y = x.
Ta có \(f\left( x \right) = 1 - {1 \over {{x^2}}}\).

Phương trình tiếp tuyến của đường cong (C) tại điểm \(M\left( {{x_o};f\left( {{x_o}} \right)} \right)\) là \(y = \left( {1 - {1 \over {x_o^2}}} \right)\left( {x - {x_o}} \right) + {x_o} + {1 \over {{x_o}}}\)

Thay x = 0 vào phương trình trên, ta được tung độ của điểm A:

\({y_A} = \left( {1 - {1 \over {x_o^2}}} \right)\left( { - {x_o}} \right) + {x_o} + {1 \over {{x_o}}} \) \(= {2 \over {{x_o}}}\).

Vậy \(A\left( {0;{2 \over {{x_o}}}} \right)\)

Hoành độ của điểm B là nghiệm của phương trình

\(\left( {1 - {1 \over {x_o^2}}} \right)\left( {x - {x_o}} \right) + {x_o} + {1 \over {{x_o}}} = x \)

\(\Leftrightarrow  - {x \over {{x_o}}} + {2 \over {{x_o}}} = 0 \Leftrightarrow x = 2{x_o}\)

\({x_B} = 2{x_o}\).

Vậy \(B\left( {2{x_o};2{x_o}} \right)\)

Ta có: \({x_M} = {x_o} = {{0 + 2{x_o}} \over 2} \) \(= {{{x_A} + {x_B}} \over 2}\)

Vì ba điểm A, M, B thẳng hàng nên từ đó suy ra rằng M là trung điểm của đoạn thẳng AB.

Ta thấy, khoảng cách từ B đến trục Oy bằng 2x0 là độ dài đường cao kẻ từ B của OAB, OA có độ dài bằng 2/x0 .
Diện tích tam giác OAB là

\(S = {1 \over 2}\left| {{y_A}} \right|\left| {{y_B}} \right| = {1 \over 2}\left| {{2 \over {{x_o}}}} \right|\left| {2{x_o} } \right|=2,\) với \(\forall {x_o} \ne 0\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved