Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một hàm số đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Câu hỏi và bài tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập trắc nghiệm khách quan chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Toán 12 Nâng cao
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
Bài 1. Nguyên hàm
Bài 2. Một số phương pháp tìm nguyên hàm
Bài 3. Tích phân
Bài 4. Một số phương pháp tích phân
Bài 5. Ứng dụng tích phân để tính diện tích hình phẳng
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
Bài tập trắc nghiệm khách quan chương III - Nguyên hàm, tích phân và ứng dụng - Toán 12 Nâng cao
LG a
Xác định phần thực của số phức \({{z + 1} \over {z - 1}}\) biết rằng |z| = 1 và z ≠ 1
Phương pháp giải:
Xét \(w={{z + 1} \over {z - 1}}\). Sử dụng tính chất: \(w + \overline w = 2a\) để suy ra phần thực của w.
Lời giải chi tiết:
Ta có:
\(|z| = 1 \Rightarrow z.\overline z = 1 \Rightarrow \overline z = {1 \over z}\)
Với \(z ≠ 1\)
Xét \(w={{z + 1} \over {z - 1}}\) ta có:
\(\eqalign{
& w+\overline w={{z + 1} \over {z - 1}} + \overline {({{z + 1} \over {z - 1}})}\cr & = {{z + 1} \over {z - 1}} + {{\overline z + 1} \over {\overline z - 1}} \cr
& = {{z + 1} \over {z - 1}} + {{{1 \over z} + 1} \over {{1 \over z} - 1}} \cr &= {{z + 1} \over {z - 1}} + {{1 + z} \over {1 - z}} = 0 \cr} \)
Suy ra: \({{z + 1} \over {z - 1}}\) là số ảo nên có phần thực bằng 0.
Cách khác:
Giả sử z=a+bi với a2+b2=1 và a+bi ≠ 1.
Suy ra: \({{z + 1} \over {z - 1}}\) là số ảo nên có phần thực bằng 0.
LG b
Chứng minh rằng nếu \({{z + 1} \over {z - 1}}\) là số ảo thì |z| = 1.
Phương pháp giải:
Sử dụng tính chất: Nếu w là số ảo thì \(w + \overline w = 0\) hay \(w =- \overline w \)
Lời giải chi tiết:
Xét \(w={{z + 1} \over {z - 1}}\).
Nếu \({{z + 1} \over {z - 1}}\) là số ảo thì
\(w = - \overline w \Leftrightarrow \frac{{z + 1}}{{z - 1}} = - \overline {\left( {\frac{{z + 1}}{{z - 1}}} \right)} \)
\(\eqalign{
& \Leftrightarrow {{z + 1} \over {z - 1}} = - {{\overline z + 1} \over {\overline z - 1}} \cr
& \Rightarrow (z + 1)(\overline z - 1) = (\overline z + 1)(1 - z) \cr
& \Leftrightarrow z.\overline z + \overline z - z - 1 = \overline z + 1 - z.\overline z - z\cr & \Leftrightarrow 2z\overline z = 2\cr &\Leftrightarrow z.\overline z = 1 \cr} \)
\( \Rightarrow \left| z \right|.\left| {\overline z } \right| = 1 \Leftrightarrow {\left| z \right|^2} = 1 \Leftrightarrow \left| z \right| = 1\)
Vậy |z| = 1.
Cách khác:
Theo câu a, ta có: \(\frac{{z - 1}}{{z + 1}} = \frac{{{a^2} + {b^2} - 1}}{{{{\left( {a - 1} \right)}^2} + {b^2}}} - \frac{{2b}}{{{{\left( {a - 1} \right)}^2} + {b^2}}}i\)
Nên (z+1)/(z-1) là số ảo thì a2+b2-1=0 <=> a2+b2=1 <=> |z| = 1 (đpcm)
Chương 8. Cá thể và quần thể sinh vật
SOẠN VĂN 12 TẬP 1
Unit 12: Water Sports - Thể Thao Dưới Nước
Bài 25. Tổ chức lãnh thổ nông nghiệp
Đề kiểm tra giữa học kì I - Lớp 12