Cho cấp số nhân (un) với công bội \(q ≠ 0\) và \({u_1} \ne 0\). Cho các số nguyên dương m và k, với \(m ≥ k\). Chứng minh rằng \({u_m} = {u_k}.{q^{m - k}}\)
a) Áp dụng:
Tìm công bội q của cấp số nhân (un) có \({u_4} = 2\) và \({u_7} = - 686\).
b) Hỏi có tồn tại hay không một cấp số nhân (un) mà \({u_2} = 5\) và \({u_{22}} = - 2000\) ?
LG a
- Chứng minh rằng \({u_m} = {u_k}.{q^{m - k}}\)
- Tìm công bội q của cấp số nhân (un) có \({u_4} = 2\) và \({u_7} = - 686\).
Phương pháp giải:
Sử dụng công thức tính số hạng tổng quát của CSN: \[{u_n} = {u_1}{q^{n - 1}}\]
Lời giải chi tiết:
Ta có:
\(\eqalign{
& {u_m} = {u_1}.{q^{m - 1}}\,\,\left( 1 \right) \cr
& {u_k} = {u_1}.{q^{k - 1}}\,\,\left( 2 \right) \cr} \)
Lấy (1) chia (2) ta được :
\({{{u_m}} \over {{u_k}}} = {q^{m - k}} \Rightarrow {u_m} = {u_k}.{q^{m - k}}\)
Áp dụng :
Ta có:
\({u_7} = {u_4}{q^{7 - 4}} \Rightarrow - 686 = 2.{q^3} \)\(\Leftrightarrow {q^3} = - 343 \Leftrightarrow q = - 7\)
LG b
Hỏi có tồn tại hay không một cấp số nhân (un) mà \({u_2} = 5\) và \({u_{22}} = - 2000\) ?
Lời giải chi tiết:
Không tồn tại. Thật vậy,
Giả sử ta có
\(\begin{array}{l}
{u_{22}} = {u_2}{q^{22 - 2}}\\
\Rightarrow - 2000 = 5.{q^{20}}\\
\Leftrightarrow {q^{20}} = - 400 < 0
\end{array}\)
(vô lí)
Vậy không tồn tại CSN như trên.
Bài 19: Carboxylic acid
Chủ đề 1: Vai trò và tác dụng cơ bản của môn cầu lông đối với sự phát triển thể chất. Một số điều luật thi đấu cầu lông
Phần 3. Động cơ đốt trong
CHƯƠNG 8: DẪN XUẤT HALOGEN - ANCOL - PHENOL
Chuyên đề 1. Lịch sử nghệ thuật truyền thống Việt Nam
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11