1. Đề số 1 - Đề kiểm tra học kì 1 Toán 8
2. Đề số 2 - Đề kiểm tra học kì 1 Toán 8
3. Đề số 3 - Đề kiểm tra học kì 1 Toán 8
4. Đề số 4 - Đề kiểm tra học kì 1 Toán 8
5. Đề số 5 - Đề kiểm tra học kì 1 Toán 8
6. Đề số 6 - Đề kiểm tra học kì 1 Toán 8
7. Đề số 7 - Đề kiểm tra học kì 1 Toán 8
8. Đề số 8 - Đề kiểm tra học kì 1 Toán 8
9. Đề số 9 - Đề kiểm tra học kì 1 Toán 8
10. Đề số 10 - Đề kiểm tra học kì 1 Toán 8
11. Đề số 11 - Đề kiểm tra học kì 1 Toán 8
12. Đề số 12 - Đề kiểm tra học kì 1 Toán 8
13. Đề số 13 - Đề kiểm tra học kì 1 Toán 8
14. Đề số 14 - Đề kiểm tra học kì 1 Toán 8
15. Đề số 15 - Đề kiểm tra học kì 1 Toán 8
16. Đề số 16 - Đề kiểm tra học kì 1 Toán 8
17. Đề số 17 - Đề kiểm tra học kì 1 Toán 8
18. Đề số 18 - Đề kiểm tra học kì 1 Toán 8
19. Đề số 19 - Đề kiểm tra học kì 1 Toán 8
20. Đề số 20 - Đề kiểm tra học kì 1 Toán 8
21. Đề số 21 - Đề kiểm tra học kì 1 Toán 8
22. Đề số 22 - Đề kiểm tra học kì 1 Toán 8
1. Đề thi kì 1 môn toán 8 năm 2019 - 2020 trường THCS Nguyễn Tất Thành
2. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 PGD Thanh Trì
3. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 PGD quận Bình Tân
4. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 PGD Tân Phú
5. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Bình Chánh
6. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Quận 11
7. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 Trường THCS Trung Sơn Trầm
8. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Phú Nhuận
9. Đề thi kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Nam Từ Liêm
10. Đề thi kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Đống Đa
11. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GD&ĐT Lập Thạch
12. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GD&ĐT Quận 12
13. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Hóc Môn
14. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 sở GDĐT Bắc Giang
1. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 trường THCS Dịch Vọng
2. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 trường THCS Nghĩa Tân
3. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 trường THCS Nguyễn Tri Phương
4. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 trường THCS Bình Thọ
5. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 PGD huyện Ba Vì
6. Giải đề thi học kì 2 toán lớp 8 năm 2020 - 2021 THCS Giảng Võ
Đề bài
I. TRẮC NGHIỆM (2 điểm)
Câu 1 :Kết quả của phép tính: \(\left( {{a^2} + 2a + 4} \right)\left( {a - 2} \right)\) là:
A. \({a^3} - 8\)
B. \({\left( {a - 2} \right)^3}\)
C. \({a^3} + 8\)
D. \({\left( {a + 2} \right)^3}\)
Câu 2 : Kết quả của phép tính: \(\left( { - 2017{x^4}{y^3}} \right):\left( { - {x^3}{y^3}} \right)\) là:
A. \( - 2017x\)
B. \(2017x\)
C. \( - 2017xy\)
D. \(2017xy\)
Câu 3 : Phân tích đa thức \({x^2} - x - 6\) thành nhân tử được kết quả là:
A.\(\left( {x + 2} \right)\left( {x + 3} \right)\)
B.\(\left( {x - 2} \right)\left( {x + 3} \right)\)
C.\(\left( {x - 2} \right)\left( {x - 3} \right)\)
D.\(\left( {x + 2} \right)\left( {x - 3} \right)\)
Câu 4 : Tập hợp tất cả các giá trị của \(x\) thỏa mãn: \({x^3} = - x\) là:
A. \(\left\{ {0;\, - 1} \right\}\)
B. \(\emptyset \)
C. \(\left\{ 0 \right\}\)
D. \(\left\{ {0; \pm 1} \right\}\)
Câu 5 : Hình chữ nhật \(ABC{\rm{D}}\) có \(AB = 6\,cm,\,BC = 4\,cm\). Khi đó, diện tích hình chữ nhật ABCD là:
A. \(2\,c{m^2}\)
B. \(10\,c{m^2}\)
C. \(12\,c{m^2}\)
D. \(24\,c{m^2}\)
Câu 6 : Số lượng trục đối xứng của hình vuông là:
A. \(6\)
B. \(4\)
C. \(2\)
D. \(1\)
Câu 7 : Một hình thoi có cạnh bằng \(10\,cm\)và độ dài một đường chéo là \(12\,cm\). Khi đó, độ dài đường chéo còn lại của hình thoi là:
A. \(16\,cm\)
B. \(12\,cm\)
C. \(8\,cm\)
D. \(4cm\)
Câu 8 : Tứ giác là hình vuông khi tứ giác đó có:
A. Hai đường chéo bằng nhau và vuông góc với nhau
B. Bốn cạnh bằng nhau
C. Bốn cạnh bằng nhau và có một góc vuông
D. Bốn góc vuông.
II. TỰ LUẬN (8 điểm)
Bài 1 (1,5 điểm)Phân tích các đa thức sau thành nhân tử:
a)\(2x - 4{x^2}\)
b)\(3x\left( {x - 2} \right) - 4x + 8\)
c)\({x^2} - 2xy + {y^2} - 9{{\rm{z}}^2}\)
Bài 2 (1,25 điểm)
a)Tìm số\(m\), biết đa thức \(2{x^3} - 3{x^2} + x + m\)chia hết cho đa thức \(x + 2\)
b)Cho \(P = x - {x^2} - 1\), chứng minh \(P < 0\,\forall \,x\)
Bài 3 (1,25 điểm)Rút gọn các phân thức sau:
a)\(A = \dfrac{{45x\left( {2 - x} \right)}}{{15x{{\left( {x - 2} \right)}^2}}}\)
b)\(B = \dfrac{{{x^3} + 2{x^2}y - x{y^2} - 2{y^3}}}{{{x^2} + 3xy + 2{y^2}}}\)
Bài 4 (3,0 điểm)Cho \(\Delta ABC\) vuông tại \(A\), đường cao \(AH\). Gọi \(M,\,N\) theo thứ tự là chân các đường vuông góc kẻ từ\(H\) đến \(AB,\,AC\). Gọi \(O\) là giao điểm của \(AH\) và \(MN\),\(K\)là trung điểm của \(CH\)
a)Chứng minh rằng tứ giác \(AMHN\) là hình chữ nhật.
b)Tính số đo \(\angle MNK\)
c)Chứng minh rằng \(BO \bot AK\)
Bài 5 (1,0 điểm)Chứng minh: \({a^4} + {b^4} + {c^4} = 2{\left( {ab + bc + ac} \right)^2}\). Biết rằng \(a + b + c = 0\)
LG trắc nghiệm
Lời giải chi tiết:
I. Trắc nghiệm
Câu 1 | Câu 2 | Câu 3 | Câu 4 |
A | B | D | C |
Câu 5 | Câu 6 | Câu 7 | Câu 8 |
D | B | A | C |
LG bài 1
Lời giải chi tiết:
\(a)\,\,2x - 4{x^2} = 2x\left( {1 - 2x} \right)\)
\(b)\,\,3x\left( {x - 2} \right) - 4x + 8\)
\(= 3x\left( {x - 2} \right) - 4\left( {x - 2} \right) \)
\(= \left( {x - 2} \right)\left( {3x - 4} \right).\)
\(c)\,\,{x^2} - 2xy + {y^2} - 9{{\rm{z}}^2} \)
\(= {\left( {x - y} \right)^2} - {\left( {3{\rm{z}}} \right)^2} \)
\(= \left( {x - y - 3{\rm{z}}} \right)\left( {x - y + 3{\rm{z}}} \right).\)
LG bài 2
Lời giải chi tiết:
a) Ta có:
\( \Rightarrow \left( {2{x^3} - 3{x^2} + x + m} \right) \vdots \left( {x + 2} \right) \Leftrightarrow m - 30 = 0 \Leftrightarrow m = 30\)
Vậy \(m = 30.\)
\(b)\,P = x - {x^2} - 1 = - \left( {{x^2} - x + 1} \right) \\\;\;\;= - \left( {{x^2} - 2.\dfrac{1}{2}.x + \dfrac{1}{4} + \dfrac{3}{4}} \right) \\\;\;\;= - {\left( {x - \dfrac{1}{2}} \right)^2} - \dfrac{3}{4}\)
Vì \( - {\left( {x - \dfrac{1}{2}} \right)^2} \le 0\,\forall \,x \Rightarrow - {\left( {x - \dfrac{1}{2}} \right)^2} - \dfrac{3}{4} < 0\,\forall \,x\)
Vậy \(P < 0\) với mọi \(x.\)
LG bài 3
Lời giải chi tiết:
\(a)\,A = \dfrac{{45x\left( {2 - x} \right)}}{{15x{{\left( {x - 2} \right)}^2}}} = \dfrac{{3\left( {2 - x} \right)}}{{{{\left( {2 - x} \right)}^2}}} = \dfrac{3}{{2 - x}}.\)
\(\begin{array}{l}b)\,\,B = \dfrac{{{x^3} + 2{x^2}y - x{y^2} - 2{y^3}}}{{{x^2} + 3xy + 2{y^2}}} \\= \dfrac{{\left( {{x^3} + 2{x^2}y} \right) - \left( {x{y^2} + 2{y^3}} \right)}}{{{x^2} + xy + 2xy + 2{y^2}}}\\ = \dfrac{{{x^2}\left( {x + 2y} \right) - {y^2}\left( {x + 2y} \right)}}{{x\left( {x + y} \right) + 2y\left( {x + y} \right)}}\\ = \dfrac{{\left( {x + 2y} \right)\left( {{x^2} - {y^2}} \right)}}{{\left( {x + y} \right)\left( {x + 2y} \right)}}\\ = \dfrac{{\left( {x + 2y} \right)\left( {x + y} \right)\left( {x - y} \right)}}{{\left( {x + y} \right)\left( {x + 2y} \right)}} = x - y.\end{array}\)
LG bài 4
Phương pháp giải:
a)Vì \(M,\,N\) lần lượt là hình chiếu của \(H\) trên \(AB,\,AC\) (gt) nên \( \Rightarrow \angle HNA = \angle HMA = {90^0}\)
Lại có \(\angle MAN = {90^0}\left( {gt} \right) \Rightarrow AMHN\) là hình chữ nhật (dhnb)
b)Xét \({\Delta _v}HNC\) có K là trung điểm của \(HC\left( {gt} \right) \Rightarrow NK\) là đường trung tuyến.
Áp dụng tính chất trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy:
\( \Rightarrow NK = HK = \dfrac{{HC}}{2} \Rightarrow \Delta HKN\) cân tại K (định nghĩa)
\( \Rightarrow \angle KHN = \angle KNH\) (tính chất)
Vì \(AMHN\) là hình chữ nhật (cmt) \( \Rightarrow \angle MNH = \angle AHN\)
Lại có: \(\angle AHN + \angle NHC = {90^0} \)
\(\Rightarrow \angle MNH + \angle HNK = {90^0}\)
\(\Rightarrow \angle MNK = {90^0}\)
c)Xét \(\Delta AHC\) có \(O,\;K\) lần lượt là trung điểm của \(AH,\;\;HC \Rightarrow OK\) là đường trung bình của \(\Delta AHC.\)
\( \Rightarrow OK//AC.\)(tính chất đường trung bình)
Mà \(AC \bot AB = \left\{ A \right\}\;\;\left( {gt} \right) \Rightarrow OK \bot AB.\)
Xét \(\Delta ABK\) có \(AH,\;KO\) là các đường cao cắt nhau tại \(O \Rightarrow O\) là trực tâm của \(\Delta ABK.\)
\( \Rightarrow BO\) là đường cao của \(\Delta ABK \Rightarrow BO \bot AK.\) (đpcm)
LG bài 5
Lời giải chi tiết:
Bài 5.
Ta có:\(a + b + c = 0 \Leftrightarrow a = - b - c.\)
\(\begin{array}{l} \Rightarrow {a^2} = {\left( {b + c} \right)^2} \Leftrightarrow {a^2} = {b^2} + {c^2} + 2bc\\ \Leftrightarrow {a^2} - {b^2} - {c^2} = 2bc.\\ \Leftrightarrow \left( {{a^2} - {b^2} - {c^2}} \right) = 4{b^2}{c^2}\\ \Leftrightarrow {a^4} + {b^4} + {c^4} - 2{a^2}{b^2} + 2{b^2}{c^2} - 2{a^2}{c^2} = 4{b^2}{c^2}\\ \Leftrightarrow {a^4} + {b^4} + {c^4} = 2{a^2}{b^2} + 2{b^2}{c^2} + 2{a^2}{c^2}\\ \Leftrightarrow {a^4} + {b^4} + {c^4} = 2\left( {{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}} \right).\end{array}\)
Lại có:
\(\begin{array}{l}\;\;\;{\left( {ab + bc + ca} \right)^2} = {\left( {ab} \right)^2} + {\left( {bc} \right)^2} + {\left( {ca} \right)^2} + 2{a^2}bc + 2a{b^2}c + 2ab{c^2}\\ \Leftrightarrow \;{\left( {ab + bc + ca} \right)^2} = {a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2} + 2abc\left( {a + b + c} \right)\\ \Leftrightarrow \;{\left( {ab + bc + ca} \right)^2} = {a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}.\\ \Rightarrow {a^4} + {b^4} + {c^4} = 2{\left( {ab + bc + ca} \right)^2}.\;\;\;\left( {dpcm} \right)\end{array}\)
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 1
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 1
Bài 28. Đặc điểm địa hình Việt Nam
Bài 2: Tôn trọng sự đa dạng của các dân tộc
Bài 37. Đặc điểm sinh vật Việt Nam
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8