Chương 1. Mệnh đề và tập hợp

Mệnh đề kéo theo

1. Lý thuyết

+ Định nghĩa: Cho hai mệnh đề \(P\) và \(Q\). Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo. Kí hiệu là \(P \Rightarrow Q\).

 + Ví dụ: P: “\(2a - 5 > 0\)”, Q: “\(a > 3\)”

Mệnh đề \(P \Rightarrow Q\) là: “Nếu \(2a - 5 > 0\) thì \(a > 3\)”

Mệnh đề \(Q \Rightarrow P\) là: “Nếu \(a > 3\) thì \(2a - 5 > 0\)”

+ Tính đúng - sai của mệnh đề \(P \Rightarrow Q\)

Mệnh đề \(P \Rightarrow Q\) chỉ sai khi P đúng và Q sai.

+ Phát biểu mệnh đề \(P \Rightarrow Q\):

     P là giả thiết, Q là kết luận của định lí

     P là điều kiện đủ để có Q

     Q là điều kiện cần để có P

 

2. Ví dụ minh họa

+ Mệnh đề kéo theo

“Nếu ABC là tam giác đều thì nó là tam giác cân”

“Nếu \({a^2} - 4 = 0\) thì \(a = 2\)”

+ Tính đúng – sai

“Nếu ABC là tam giác đều thì nó là tam giác cân” đúng.

“Nếu \({a^2} - 4 = 0\) thì \(a = 2\)” sai vì \(a =  - 2\) thì ta cũng có \({a^2} - 4 = 0\).

+ Phát biểu mệnh đề

“ABC là tam giác đều kéo theo nó là tam giác cân” Hoặc “ ABC là tam giác đều nên nó là tam giác cân”.

“ABC là tam giác đều là điều kiện đủ để nó là tam giác cân” hoặc “ABC là tam giác cân là điều kiện cần để nó là tam giác đều”

Từ \({a^2} - 4 = 0\) suy ra \(a = 2\)” hoặc “\({a^2} - 4 = 0\) kéo theo \(a = 2\)”

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved