Chương 1. Mệnh đề và tập hợp

Mệnh đề chứa kí hiệu Với mọi, Tồn tại

1. Lý thuyết

+ Kí hiệu \(\forall \) đọc là “với mọi

+ Kí hiệu \(\exists \) đọc là “tồn tại

+  Mệnh đề “\(\forall x \in X,P(x)\)

Đúng nếu với mọi \({x_0} \in X\), \(P({x_0})\) là mệnh đề đúng.

Sai nếu có \({x_0} \in X\) sao cho \(P({x_0})\) là mệnh đề sai.

+  Mệnh đề “\(\exists x \in X,P(x)\)

Đúng nếu có \({x_0} \in X\) sao cho \(P({x_0})\) là mệnh đề đúng.

Sai nếu mọi \({x_0} \in X\) ta có \(P({x_0})\) là mệnh đề sai.

+ Mệnh đề phủ định

Phủ định của mệnh đề \(\forall x \in X,P(x)\) là \(\exists x \in X,\overline {P(x)} \).

Phủ định của mệnh đề \(\exists x \in X,P(x)\) là \(\forall x \in X,\overline {P(x)} \).

 

2. Ví dụ minh họa

A: “Mọi số tự nhiên đều không âm”

B: “Với mọi số thực x, \(\sqrt x \) là số vô tỉ”

C: “Có số tự nhiên n sao cho \(n(n + 2)\) là số chính phương”

+ Viết lại các mệnh đề, sử dụng kí hiệu \(\forall ,\;\exists \)

A: “\(\forall n \in \mathbb{N},n \ge 0\)”

B: “\(\forall x \in \mathbb{R}|\sqrt x \) là số vô tỉ”

C: “\(\exists n \in \mathbb{N}|n(n + 3)\) là số chính phương”

+ Xét tính đúng sai:

Mệnh đề A đúng.

Mệnh đề B sai vì \(x = 1 \in \mathbb{R},\sqrt x  = 1\) không là số vô tỉ.

Mệnh đề C đúng, vì \(n = 1\) thì \(n(n + 3) = 4\) là số chính phương.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved