1. Lý thuyết
+ Phép giao
Tập hợp gồm các phần tử thuộc cả hai tập hợp A và B gọi là giao của hai tập hợp A và B. Kí hiệu: \(A \cap B\)
\(A \cap B = \{ x|x \in A\) và \(x \in B\} \)
+ Phép hợp
Tập hợp gồm các phần tử thuộc tập hợp A hoặc thuộc tập hợp B gọi là hợp của hai tập hợp A và B. Kí hiệu: \(A \cup B\)
\(A \cup B = \{ x|x \in A\) hoặc \(x \in B\} \)
+ Hiệu của A và B
Tập hợp gồm các phần tử thuộc tập hợp A nhưng không thuộc B gọi là hiệu của A và B. Kí hiệu: \(A{\rm{\backslash }}B\).
\(A{\rm{\backslash }}B = \{ x \in A|x \notin B\} \)
+ Phần bù
Nếu \(A \subset B\) thì hiệu \(A{\rm{\backslash }}B\) gọi là phần bù của A trong B. Kí hiệu: \({C_B}A\)
+ Biểu đồ Ven
+ Mối quan hệ về số phần tử
\(n\left( {A \cup B} \right) = n(A) + n(B) - n(A \cap B)\)
\(n(A{\rm{\backslash }}B) = n(A) - n(A \cap B)\)
2. Ví dụ minh họa
Ví dụ 1. Cho hai tập hợp \(A = \left[ { - 2;{\mkern 1mu} {\mkern 1mu} 3} \right)\) và \(B = \left[ {1;6} \right)\).
Xác định các tập hợp \(A \cup B,A \cap B,A{\rm{\backslash }}B,B{\rm{\backslash }}A\)
\(A \cup B = [ - 2;6)\)
\(A \cap B = [ - 1;3)\)
\(A\backslash B = [ - 2; - 1)\)
\(B\backslash A = [3;6)\)
Ví dụ 2. Cho hai tập hợp \(A = ( - 1;4]\) và \(B = [ - 2; + \infty )\). Xác định tập hợp \({C_B}A\).
Ta có: \({C_B}A = B\backslash A = [ - 2; + \infty ){\rm{\backslash }}( - 1;4]\)
\( \Rightarrow {C_B}A = [ - 2; - 1] \cup (4; + \infty ).\)
Chương 7. Nguyên tố nhóm halogen
Chuyên đề 1. Tập nghiên cứu và viết báo cáo về một vấn đề văn hóa dân gian
Unit 8: Science
Chương 5. Năng lượng hóa học
Phần 1. Giới thiệu chương trình môn sinh học và các cấp độ tổ chức của thế giới sống
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10