Một hộp chứa \(10\) quả cầu đỏ được đánh số từ \(1\) đến \(10\), \(20\) quả cầu xanh được đánh số từ \(1\) đến \(20\). Lấy ngẫu nhiên một quả. Tìm xác suất sao cho quả được chọn:
LG a
Ghi số chẵn;
Phương pháp giải:
Để tính xác suất của biến cố \(A\).
+) Tính số phần tử của không gian mẫu \(n(\Omega)\).
+) Tính số phần tử của biến cố \(A\): \(n(A)\).
+) Tính xác suất của biến cố \(A\): \(P(A)=\dfrac{n(A)}{n(\Omega)}\).
Lời giải chi tiết:
Trong hộp có \(30\) quả nên \(n(\Omega)=30\)
Gọi biến cố \(A\) là biến cố quả được chọn là quả ghi số chẵn.
Có \(15\) quả ghi số chẵn nên \(n(A)=15\).
Vậy theo định nghĩa \(P\left( A \right) = \dfrac{{n(A)}}{{n(\Omega )}} = \dfrac{{15}}{{30}} = \dfrac{1}{2}\).
LG b
Màu đỏ;
Phương pháp giải:
Để tính xác suất của biến cố A.
+) Tính số phần tử của không gian mẫu \(n(\Omega)\).
+) Tính số phần tử của biến cố \(A\): \(n(A)\).
+) Tính xác suất của biến cố \(A\): \(P(A)=\dfrac{n(A)}{n(\Omega)}\).
Lời giải chi tiết:
Trong hộp có 30 quả nên \(n(\Omega)=30\)
Gọi biến cố \(B\) là biến cố quả được chọn là quả màu đỏ. Có \(10\) quả màu đỏ nên \(n(B)=10\).
Vậy theo định nghĩa \(P\left( B \right) = \dfrac{{n(B)}}{{n(\Omega )}} = \dfrac{{10}}{{30}} = \dfrac{1}{3}\).
LG c
Màu đỏ và ghi số chẵn;
Phương pháp giải:
Để tính xác suất của biến cố \(A\).
+) Tính số phần tử của không gian mẫu \(n(\Omega)\).
+) Tính số phần tử của biến cố \(A\): \(n(A)\).
+) Tính xác suất của biến cố \(A\): \(P(A)=\dfrac{n(A)}{n(\Omega)}\).
Lời giải chi tiết:
Trong hộp có \(30\) quả nên \(n(\Omega)=30\)
Gọi biến cố \(C\) là biến cố quả được chọn là quả ghi số chẵn. Có \(5\) quả màu đỏ ghi số chẵn nên \(n(C)=5\).
Vậy theo định nghĩa \(P\left( C \right) = \dfrac{{n(C)}}{{n(\Omega )}} = \dfrac{5}{{30}} = \dfrac{1}{6}\).
LG d
Màu xanh hoặc ghi số lẻ
Phương pháp giải:
Để tính xác suất của biến cố \(A\).
+) Tính số phần tử của không gian mẫu \(n(\Omega)\).
+) Tính số phần tử của biến cố \(A\): \(n(A)\).
+) Tính xác suất của biến cố \(A\): \(P(A)=\dfrac{n(A)}{n(\Omega)}\).
Lời giải chi tiết:
Trong hộp có \(30\) quả nên \(n(\Omega)=30\)
Gọi biến cố \(D\) là biến cố quả được chọn màu xanh hoặc ghi số lẻ.
Có 20 quả xanh và 5 quả đỏ ghi số lẻ nên có \(25\) quả màu xanh hoặc ghi số lẻ nên \(n(D)=25\)
Vậy theo định nghĩa \(P\left( D \right) = \dfrac{{n(D)}}{{n(\Omega )}} = \dfrac{{25}}{{30}} = \dfrac{5}{6}\).
CHƯƠNG IV. SINH SẢN - SINH HỌC 11 NÂNG CAO
Tải 10 đề thi giữa kì 1 Sinh 11
Tiếng Anh 11 mới tập 1
Phần hai: Giáo dục pháp luật
CHƯƠNG 4. SINH SẢN
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11