1. Lý thuyết
+ Kí hiệu \(\forall \) đọc là “với mọi”
+ Kí hiệu \(\exists \) đọc là “tồn tại”
+ Mệnh đề “\(\forall x \in X,P(x)\)”
Đúng nếu với mọi \({x_0} \in X\), \(P({x_0})\) là mệnh đề đúng.
Sai nếu có \({x_0} \in X\) sao cho \(P({x_0})\) là mệnh đề sai.
+ Mệnh đề “\(\exists x \in X,P(x)\)”
Đúng nếu có \({x_0} \in X\) sao cho \(P({x_0})\) là mệnh đề đúng.
Sai nếu mọi \({x_0} \in X\) ta có \(P({x_0})\) là mệnh đề sai.
+ Mệnh đề phủ định
Phủ định của mệnh đề \(\forall x \in X,P(x)\) là \(\exists x \in X,\overline {P(x)} \).
Phủ định của mệnh đề \(\exists x \in X,P(x)\) là \(\forall x \in X,\overline {P(x)} \).
2. Ví dụ minh họa
A: “Mọi số tự nhiên đều không âm”
B: “Với mọi số thực x, \(\sqrt x \) là số vô tỉ”
C: “Có số tự nhiên n sao cho \(n(n + 2)\) là số chính phương”
+ Viết lại các mệnh đề, sử dụng kí hiệu \(\forall ,\;\exists \)
A: “\(\forall n \in \mathbb{N},n \ge 0\)”
B: “\(\forall x \in \mathbb{R}|\sqrt x \) là số vô tỉ”
C: “\(\exists n \in \mathbb{N}|n(n + 3)\) là số chính phương”
+ Xét tính đúng sai:
Mệnh đề A đúng.
Mệnh đề B sai vì \(x = 1 \in \mathbb{R},\sqrt x = 1\) không là số vô tỉ.
Mệnh đề C đúng, vì \(n = 1\) thì \(n(n + 3) = 4\) là số chính phương.
Unit 2. A Day in the Life
Chuyên đề 2. Công nghệ enzyme và ứng dụng
Chủ đề 8. Hiến pháp nước Cộng hòa xã hội chủ nghĩa Việt Nam
Soạn Văn 10 Chân trời sáng tạo tập 1 - siêu ngắn
Thơ duyên
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10