Tổng hợp 50 đề thi vào 10 môn Toán
Tổng hợp 50 đề thi vào 10 môn Toán

2. Đề số 2 - Đề thi vào lớp 10 môn Toán

Đề bài

Bài 1. (3,0 điểm)

1. Rút gọn biểu thức

2. Giải hệ phương trình

3. Giải phương trình

Bài 2. (2 điểm)

Cho hai hàm số: có đồ thị lần lượt là   và

1) Vẽ    và trên cùng hệ trục tọa độ.

2)  Bằng phép toán tìm tọa độ giao điểm của    và

Bài 3. (1 điểm)

Cho phương trình (với m là tham số).

1) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m.

2) Tìm các số nguyên m để phương trình có nghiệm nguyên.

Bài 4. (1,0 điểm)

Cho tam giác ABC vuông tại A, đường cao AH . Biết BH = 3,6cm và HC = 6,4 cm. Tính độ dài BC, AH, AB, AC.

Bài 5. (3 điểm).

 Cho tam giác ABC vuông tại A , M là trung điểm của cạnh AC. Đường tròn đường kính  MC cắt BC tại N. Đường thẳng BM cắt đường tròn đường kính MC tại D.

1. Chứng minh tứ giác BADC nội tiếp.

2. Chứng minh DB là phân giác của góc ADN.

3. BA và CD kéo dài cắt nhau tại P. Chứng minh ba điểm P, M, N thẳng hàng.

Lời giải chi tiết

Bài 1.

1. Rút gọn biểu thức

Ta có:

2. Giải hệ phương trình

Vậy hệ phương trình có nghiệm duy nhất là:

3. Giải phương trình

Ta có:

Khi đó phương trình đã cho có hai nghiệm phân biệt là: 

Vậy tập nghiệm của phương trình đã cho là:

Bài 2: Cho hai hàm số: có đồ thị lần lượt là   và

1) Vẽ    và trên cùng hệ trục tọa độ.

+) Vẽ đồ thị hàm số:

+) Vẽ đồ thị hàm số:

Đồ thị hàm số:

          

2)  Bằng phép toán tìm tọa độ giao điểm của    và

Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình hoành độ giao điểm.

Ta có phương trình hoành độ giao điểm của hai đồ thị là:

Vậy hai đồ thị cắt nhau tại hai điểm phân biệt

Bài 3:

1) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m.

Ta có:

Hay phương trình luôn có hai nghiệm phân biệt với mọi

2) Tìm các số nguyên m để phương trình có nghiệm nguyên.

Phương trình đã cho luôn có hai nghiệm phân biệt với mọi

Đề bài yêu cầu tìm để Ta đưa bài toán về dạng tìm x nguyên để m nguyên.

Ta có:

Vậy với thỏa mãn yêu cầu bài toán.

Bài 4.

 

Ta có: nên :

Áp dụng hệ thức lượng trong tam giác  ABC vuông tại A với đường cao AH ta có:

 Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:

Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có:

Vậy: BC = 10 cm; AH = 4,8 cm; AB = 6 cm; AC = 8 cm.

Bài 5.

 

1. Chứng minh tứ giác BADC nội tiếp.

Ta có (góc nội tiếp chắn nửa đường tròn đường kính MC) .(Do B, M, D thẳng hàng)

(do giả thiết tam giác ABC vuông tại A)

Xét tứ giác BADC có Hai điểm A và D cùng nhìn BC dưới góc 900 Tứ giác BADC là tứ giác nội tiếp (Tứ giác có hai đỉnh cùng nhìn 1 cạnh dưới các góc bằng nhau).

2. Chứng minh DB là phân giác của góc ADN.

Do BADC là tứ giác nội tiếp (cmt) (hai góc nội tiếp cùng chắn cung AB).

Lại có (hai góc nội tiếp cùng chắn cung MN của đường tròn đường kính MC).

là tia phân giác của góc ADN.

3. BA và CD kéo dài cắt nhau tại P. Chứng minh ba điểm P, M, N thẳng hàng.

Ta có

Tam giác ABC vuông tại A

Xét tam giác PBC có là trực tâm tam giác PBC.

.

Lại có (góc nội tiếp chắn nửa đường tròn đường kính MC)

Qua điểm M nằm ngoài đường thẳng BC ta kẻ được

hay ba điểm P, M, N thẳng hàng.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi