Tổng hợp 50 đề thi vào 10 môn Toán
Tổng hợp 50 đề thi vào 10 môn Toán

30. Đề số 30 - Đề thi vào lớp 10 môn Toán

Đề bài

Câu 1 (1 điểm):

Thực hiện phép tính: \(\left( {\sqrt 3  + 1} \right).\dfrac{{\sqrt 3  - 3}}{{2\sqrt 3 }}.\)

Câu 2 (1 điểm):

Cho hàm số \(y =  - \dfrac{1}{2}{x^2}\) có đồ thị \(\left( P \right)\) và đường thẳng \(\left( d \right):\;\;y = 3 - 4x.\) Lập phương trình đường thẳng \(\left( \Delta  \right)\) song song với \(\left( d \right)\) và cắt \(\left( P \right)\) tại điểm \(M\) có hoành độ bằng \(2.\)

Câu 3 (1 điểm):

Rút gọn biểu thức sau: \(A = \left( {1 - \dfrac{{2\sqrt x }}{{3\sqrt x  + 1}} - \dfrac{{1 - 2\sqrt x }}{{1 - 9x}}} \right):\left( {\dfrac{{6\sqrt x  + 5}}{{3\sqrt x  + 1}} - 2} \right)\)\(\;\;\;\left( {x \ge 0,\;\;x \ne \dfrac{1}{9}} \right).\)

Câu 4 (1,5 điểm):

Cho phương trình \({x^2} - x + m + 1 = 0\)  (m là tham số).

a) Giải phương trình với \(m =  - 3.\)

b) Tìm tất cả các giá trị của m để phương trình đã cho có hai nghiệm \({x_1},\;{x_2}\) thỏa mãn điều kiện: \(\left| {{x_1} - {x_2}} \right| = 2.\)

Câu 5 (1 điểm):

Một tam giác vuông có chu vi bằng 24 cm. Độ dài hai cạnh góc vuông hơn kém nhau 2 cm. Tính diện tích tam giác vuông đó.

Câu 6 (1,0 điểm) Cho hình nón có bán kính đáy bằng 3m, diện tích toàn phần bằng \(24\pi \,\,{m^2}\). Tính thể tích của hình nón.

Câu 7 (2,5 điểm) Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao AA’, BB’, CC’ của tam giác ABC cắt nhau tại H. Đường thẳng AO cắt đường tròn tâm O tại D khác A.

a) Chứng minh tứ giác AB’HC’ nội tiếp đường tròn.

b)  Gọi I là giao điểm của hai đường thẳng HD và BC. Chứng minh I là trung điểm của đoạn BC.

c) Tính \(\dfrac{{AH}}{{AA'}} + \dfrac{{BH}}{{BB'}} + \dfrac{{CH}}{{CC'}}\).

Câu 8 (1,0 điểm) Tìm giá trị nhỏ nhất của biểu thức \(T = 3{x^2} + 4{y^2} + 4xy + 2x - 4y + 2021\)

Lời giải chi tiết

Câu 1:

Thực hiện phép tính: \(\left( {\sqrt 3  + 1} \right).\dfrac{{\sqrt 3  - 3}}{{2\sqrt 3 }}.\)

\(\begin{array}{l}\;\;\;\left( {\sqrt 3  + 1} \right).\dfrac{{\sqrt 3  - 3}}{{2\sqrt 3 }}\\ = \left( {\sqrt 3  + 1} \right)\dfrac{{\sqrt 3 \left( {1 - \sqrt 3 } \right)}}{{2\sqrt 3 }}\\ = \dfrac{{\sqrt 3 \left( {1 - 3} \right)}}{{2\sqrt 3 }} = \dfrac{{ - 2\sqrt 3 }}{{2\sqrt 3 }} =  - 1.\end{array}\)

Câu 2:

Cho hàm số \(y =  - \dfrac{1}{2}{x^2}\) có đồ thị \(\left( P \right)\) và đường thẳng \(\left( d \right):\;\;y = 3 - 4x.\) Lập phương trình đường thẳng \(\left( \Delta  \right)\) song song với \(\left( d \right)\) và cắt \(\left( P \right)\) tại điểm \(M\) có hoành độ bằng \(2.\)

Gọi phương trình đường thẳng \(\left( \Delta  \right):\;\;y = ax + b.\)

Khi đó \(\left( \Delta  \right)//\left( d \right) \Rightarrow \left\{ \begin{array}{l}a =  - 4\\b \ne 3\end{array} \right.\) \( \Rightarrow \left( \Delta  \right):\;\;y =  - 4x + b.\)

Điểm \(M\) có hoành độ bằng \(2\) và thuộc đồ thị hàm số \(\left( P \right) \Rightarrow y =  - \dfrac{1}{2}{.2^2} =  - 2 \Rightarrow M\left( {2; - 2} \right).\)

Điểm \(M\left( {2; - 2} \right) \in \left( \Delta  \right) \) \(\Rightarrow  - 2 =  - 4.2 + b \Leftrightarrow b = 6\;\;\left( {tm} \right).\)

Vậy phương trình đường thẳng \(\left( \Delta  \right):\;\;y =  - 4x + 6.\)

Câu 3:

Rút gọn biểu thức sau: \(A = \left( {1 - \dfrac{{2\sqrt x }}{{3\sqrt x  + 1}} - \dfrac{{1 - 2\sqrt x }}{{1 - 9x}}} \right):\left( {\dfrac{{6\sqrt x  + 5}}{{3\sqrt x  + 1}} - 2} \right)\;\;\;\left( {x \ge 0,\;\;x \ne \dfrac{1}{9}} \right).\)

\(\begin{array}{l}A = \left( {1 - \dfrac{{2\sqrt x }}{{3\sqrt x  + 1}} - \dfrac{{1 - 2\sqrt x }}{{1 - 9x}}} \right):\left( {\dfrac{{6\sqrt x  + 5}}{{3\sqrt x  + 1}} - 2} \right)\;\;\;\left( {x \ge 0,\;\;x \ne \dfrac{1}{9}} \right)\\\;\;\; = \left( {1 - \dfrac{{2\sqrt x }}{{3\sqrt x  + 1}} + \dfrac{{1 - 2\sqrt x }}{{\left( {3\sqrt x  + 1} \right)\left( {3\sqrt x  - 1} \right)}}} \right):\left( {\dfrac{{6\sqrt x  + 5 - 2\left( {3\sqrt x  + 1} \right)}}{{3\sqrt x  + 1}}} \right)\\\;\;\; = \dfrac{{9x - 1 - 2\sqrt x \left( {3\sqrt x  - 1} \right) + 1 - 2\sqrt x }}{{\left( {3\sqrt x  + 1} \right)\left( {3\sqrt x  - 1} \right)}}:\dfrac{{6\sqrt x  + 5 - 6\sqrt x  - 2}}{{3\sqrt x  + 1}}\\\;\;\; = \dfrac{{9x - 1 - 6x + 2\sqrt x  + 1 - 2\sqrt x }}{{\left( {3\sqrt x  + 1} \right)\left( {3\sqrt x  - 1} \right)}}.\dfrac{{3\sqrt x  + 1}}{3}\\\;\;\; = \dfrac{{3x}}{{3\left( {3\sqrt x  - 1} \right)}} = \dfrac{x}{{3\sqrt x  - 1}}.\end{array}\)

Câu 4:

Cho phương trình \({x^2} - x + m + 1 = 0\)  (m là tham số).

a) Giải phương trình với \(m =  - 3.\)

Với \(m =  - 3\) ta có phương trình: \({x^2} - x - 2 = 0\)

Ta có: \(a = 1;\;b =  - 1;\;c =  - 2\) \( \Rightarrow a - b + c = 1 + 1 - 2 = 0.\)

\( \Rightarrow \) Phương trình có hai nghiệm phân biệt: \({x_1} =  - 1;\;\;{x_2} =  - \dfrac{c}{a} = 2.\)

Vậy với \(m =  - 3\) phương trình có tập nghiệm \(S = \left\{ { - 1;\;2} \right\}.\)

b) Tìm tất cả các giá trị của m để phương trình đã cho có hai nghiệm \({x_1},\;{x_2}\) thỏa mãn điều kiện: \(\left| {{x_1} - {x_2}} \right| = 2.\)

Phương trình có hai nghiệm \( \Leftrightarrow \Delta  \ge 0\) \( \Leftrightarrow 1 - 4\left( {m + 1} \right) \ge 0 \Leftrightarrow m \le  - \dfrac{3}{4}.\)

Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 1\\{x_1}{x_2} = m + 1\end{array} \right..\)

Theo đề bài ta có: \(\left| {{x_1} - {x_2}} \right| = 2\)

\(\begin{array}{l} \Leftrightarrow {\left| {{x_1} - {x_2}} \right|^2} = 4\\ \Leftrightarrow x_1^2 - 2{x_1}{x_2} + x_2^2 = 4\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 4\\ \Leftrightarrow 1 - 4\left( {m + 1} \right) = 4\\ \Leftrightarrow 1 - 4m - 4 = 4\\ \Leftrightarrow m =  - \dfrac{7}{4}\;\;\left( {tm} \right).\end{array}\)

Vậy \(m =  - \dfrac{7}{4}\) thỏa mãn bài toán.

Câu 5:

Một tam giác vuông có chu vi bằng 24 cm. Độ dài hai cạnh góc vuông hơn kém nhau 2 cm. Tính diện tích tam giác vuông đó.

Gọi độ dài của cạnh góc vuông lớn của tam giác là \(x\;cm,\;\;\left( {2 < x \le 8} \right).\)

Khi đó độ dài cạnh góc vuông còn lại của tam giác là: \(x - 2\;\;\left( {cm} \right).\)

\( \Rightarrow \) Độ dài cạnh huyền của tam giác vuông là: \(24 - x - x + 2 = 26 - 2x\;\;\left( {cm} \right).\)

Áp dụng định lý Pi-ta-go cho tam giác vuông này ta có phương trình:

\(\begin{array}{l}\;\;\;\;{\left( {26 - 2x} \right)^2} = {x^2} + {\left( {x - 2} \right)^2}\\ \Leftrightarrow 676 - 104x + 4{x^2} = 2{x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 100x + 672 = 0\\ \Leftrightarrow 2\left( {x - 42} \right)\left( {x - 8} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 42 = 0\\x - 8 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 42\;\;\left( {ktm} \right)\\x = 8\;\;\left( {tm} \right)\end{array} \right..\end{array}\)

\( \Rightarrow \) Độ dài cạnh góc vuông còn lại của tam giác là: \(8 - 2 = 6\left( {cm} \right).\)

Vậy diện tích của tam giác vuông là: \(S = \dfrac{1}{2}.8.6 = 24\;c{m^2}.\)

Câu 6.

\(\begin{array}{l}{S_{tp}} = 24\pi \,\,{m^2} \Rightarrow \pi r\left( {r + l} \right) = 24\pi \\ \Leftrightarrow 3\left( {3 + l} \right) = 24 \Leftrightarrow l = 5\,\,\left( m \right)\end{array}\)

\( \Rightarrow \) Độ dài đường sinh của hình nón bằng 5 m.

\( \Rightarrow \) Độ dài đường cao của hình nón là \(h = \sqrt {{l^2} - {r^2}}  = \sqrt {{5^2} - {3^2}}  = 4\,\,\left( m \right)\).

Vậy thể tích của khối nón là \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {.3^2}.4 = 12\pi \,\,\left( {{m^3}} \right)\).

Câu 7.

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao AA’, BB’, CC’ của tam giác ABC cắt nhau tại H. Đường thẳng AO cắt đường tròn tâm O tại D khác A.

 

a)  Chứng minh tứ giác AB’HC’ nội tiếp đường tròn.

Xét tứ giác AB’HC’ có \(\angle AB'H + \angle AC'H = {90^0} + {90^0} = {180^0} \Rightarrow \) Tứ giác AB’HC’ là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).

b) Gọi I là giao điểm của hai đường thẳng HD và BC. Chứng minh I là trung điểm của đoạn BC.

Ta có \(\angle ABD = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow AB \bot BD\).

Mà \(CH \bot AB\,\,\left( {gt} \right) \Rightarrow BD\parallel CH\)

Chứng minh tương tự ta có \(CD\parallel BH\).

\( \Rightarrow \) Tứ giác BHCD là tứ giác nội tiếp (Tứ giác có các cặp cạnh đối song song)

Mà \(BC \cap HD = I\,\,\left( {gt} \right) \Rightarrow I\) là trung điểm của BC.

c)  Tính \(\dfrac{{AH}}{{AA'}} + \dfrac{{BH}}{{BB'}} + \dfrac{{CH}}{{CC'}}\).

Ta có:

\(\dfrac{{{S_{HBC}}}}{{{S_{ABC}}}} = \dfrac{{\dfrac{1}{2}HA'.BC}}{{\dfrac{1}{2}AA'.BC}} = \dfrac{{HA'}}{{AA'}} \)

\(\Rightarrow 1 - \dfrac{{{S_{HBC}}}}{{{S_{ABC}}}} = 1 - \dfrac{{HA'}}{{AA'}} = \dfrac{{AA' - HA'}}{{AA'}} = \dfrac{{AH}}{{AA'}}\)

Chứng minh tương tự ta có: \(\dfrac{{BH}}{{BB'}} = 1 - \dfrac{{{S_{HAC}}}}{{{S_{ABC}}}};\,\,\dfrac{{CH}}{{CC'}} = 1 - \dfrac{{{S_{HAB}}}}{{{S_{ABC}}}}\)

\( \Rightarrow \dfrac{{AH}}{{AA'}} + \dfrac{{BH}}{{BB'}} + \dfrac{{CH}}{{CC'}} \)\(\;= 1 - \dfrac{{{S_{HBC}}}}{{{S_{ABC}}}} + 1 - \dfrac{{{S_{HAC}}}}{{{S_{ABC}}}} + 1 - \dfrac{{{S_{HAB}}}}{{{S_{ABC}}}} \)\(\;= 3 - \dfrac{{{S_{HBC}} + {S_{HAC}} + {S_{HAB}}}}{{{S_{ABC}}}} \)\(\;= 3 - 1 = 2\)

Câu 8.

\(\begin{array}{l}T = 3{x^2} + 4{y^2} + 4xy + 2x - 4y + 2021\\\;\;\; = \left( {{x^2} + 2x + 1} \right) + 2\left( {{y^2} - 2y + 1} \right) + 2\left( {{x^2} + {y^2} + 2xy} \right) + 2018\\\;\;\; = {\left( {x + 1} \right)^2} + 2{\left( {y - 1} \right)^2} + 2{\left( {x + y} \right)^2} + 2018 \ge 2018\\\left( {Do\,\,{{\left( {x + 1} \right)}^2} \ge 0;\,\,{{\left( {y - 1} \right)}^2} \ge 0;\,\,{{\left( {x + y} \right)}^2} \ge 0} \right)\end{array}\)

Dấu bằng xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}x + 1 = 0\\y - 1 = 0\\x + y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 1\\y = 1\end{array} \right.\).

Vậy \({T_{\min }} = 2018 \Leftrightarrow \left\{ \begin{array}{l}x =  - 1\\y = 1\end{array} \right.\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved