1. Đề số 1 - Đề kiểm tra học kì 1 Toán 8
2. Đề số 2 - Đề kiểm tra học kì 1 Toán 8
3. Đề số 3 - Đề kiểm tra học kì 1 Toán 8
4. Đề số 4 - Đề kiểm tra học kì 1 Toán 8
5. Đề số 5 - Đề kiểm tra học kì 1 Toán 8
6. Đề số 6 - Đề kiểm tra học kì 1 Toán 8
7. Đề số 7 - Đề kiểm tra học kì 1 Toán 8
8. Đề số 8 - Đề kiểm tra học kì 1 Toán 8
9. Đề số 9 - Đề kiểm tra học kì 1 Toán 8
10. Đề số 10 - Đề kiểm tra học kì 1 Toán 8
11. Đề số 11 - Đề kiểm tra học kì 1 Toán 8
12. Đề số 12 - Đề kiểm tra học kì 1 Toán 8
13. Đề số 13 - Đề kiểm tra học kì 1 Toán 8
14. Đề số 14 - Đề kiểm tra học kì 1 Toán 8
15. Đề số 15 - Đề kiểm tra học kì 1 Toán 8
16. Đề số 16 - Đề kiểm tra học kì 1 Toán 8
17. Đề số 17 - Đề kiểm tra học kì 1 Toán 8
18. Đề số 18 - Đề kiểm tra học kì 1 Toán 8
19. Đề số 19 - Đề kiểm tra học kì 1 Toán 8
20. Đề số 20 - Đề kiểm tra học kì 1 Toán 8
21. Đề số 21 - Đề kiểm tra học kì 1 Toán 8
22. Đề số 22 - Đề kiểm tra học kì 1 Toán 8
1. Đề thi kì 1 môn toán 8 năm 2019 - 2020 trường THCS Nguyễn Tất Thành
2. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 PGD Thanh Trì
3. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 PGD quận Bình Tân
4. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 PGD Tân Phú
5. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Bình Chánh
6. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Quận 11
7. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 Trường THCS Trung Sơn Trầm
8. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Phú Nhuận
9. Đề thi kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Nam Từ Liêm
10. Đề thi kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Đống Đa
11. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GD&ĐT Lập Thạch
12. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GD&ĐT Quận 12
13. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Hóc Môn
14. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 sở GDĐT Bắc Giang
1. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 trường THCS Dịch Vọng
2. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 trường THCS Nghĩa Tân
3. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 trường THCS Nguyễn Tri Phương
4. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 trường THCS Bình Thọ
5. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 PGD huyện Ba Vì
6. Giải đề thi học kì 2 toán lớp 8 năm 2020 - 2021 THCS Giảng Võ
Đề bài
Bài 1 (2 điểm)Phân tích các đa thức sau thành nhân tử:
a)\(2{x^3} - 50x\)
b)\({x^2} - 6x + 9 - 4{y^2}\)
c)\({x^2} - 7x + 10\)
Bài 2 (1,5 điểm)
a.Làm tính chia: \(\left( {12{x^6}{y^4} + 9{x^5}{y^3} - 15{x^2}{y^3}} \right):3{x^2}{y^3}\)
b. Rút gọn biểu thức: \(\left( {{x^2} - 2} \right)\left( {1 - x} \right) + \left( {x + 3} \right)\left( {{x^2} - 3x + 9} \right)\)
Bài 3 (2,5 điểm)Cho biểu thức: \(A = \dfrac{5}{{x + 3}} - \dfrac{2}{{3 - x}} - \dfrac{{3{x^2} - 2x - 9}}{{{x^2} - 9}}\) (với \(x \ne \pm 3\))
a)Rút gọn biểu thức \(A\).
b)Tính giá trị của \(A\) khi \(\left| {x - 2} \right| = 1\)
c)Tìm giá trị nguyên của \(x\) để\(A\) có giá trị nguyên.
Bài 4 (3,5 điểm)Cho \(\Delta ABC\)vuông tại \(A\), gọi \(M\) là trung điểm của \(AC\). Gọi \(D\) là điểm đối xứng với \(B\) qua \(M\).
a)Chứng minh tứ giác \(ABC{\rm{D}}\) là hình bình hành.
b)Gọi \(N\) là điểm đối xứng với \(B\) qua \(A\). Chứng minh tứ giác \(AC{\rm{D}}N\) là hình chữ nhật.
c)Kéo dài \(MN\) cắt \(BC\) tại \(I\). Vẽ đường thẳng qua \(A\) song song với \(MN\) cắt \(BC\) ở\(K\). Chứng minh: \(KC = 2BK\)
d)Qua \(B\) kẻ đường thẳng song song với \(MN\) cắt \(AC\) kéo dài tại \(E\) . Tam giác \(ABC\) cần có thêm điều kiện gì để tứ giác \(EBMN\) là hình vuông.
Bài 5 (0,5 điểm)Cho \(a\) thỏa mãn: \({a^2} - 5a + 2 = 0\). Tính giá trị của biểu thức:\(P = {a^5} - {a^4} - 18{a^3} + 9{a^2} - 5a + 2017 + \left( {{a^4} - 40{a^2} + 4} \right):{a^2}\)
LG bài 1
Lời giải chi tiết:
\(\begin{array}{l}a)\,\,2{x^3} - 50x\,\\{\rm{ = }}\,{\rm{2}}x\left( {{x^2} - 25} \right)\\ = 2x\left( {x - 5} \right)\left( {x + 5} \right)\end{array}\)
\(\begin{array}{l}b)\,\,{x^2} - 6x + 9 - 4{y^2}\\ = {\left( {x - 3} \right)^2} - 4{y^2}\\ = \left( {x - 3 + 2y} \right)\left( {x - 3 - 2y} \right)\end{array}\)
\(\begin{array}{l}c)\,{x^2} - 7x + 10\\ = {x^2} - 5x{\rm{ }} - 2x + 10\\ = \left( {{x^2} - 5{\rm{x}}} \right) - \left( {2x - 10} \right)\\ = x\left( {x - 5} \right) - 2\left( {x - 5} \right)\\ = \left( {x - 5} \right)\left( {x - 2} \right)\end{array}\)
LG bài 2
Lời giải chi tiết:
\(\begin{array}{l}a)\,\,\left( {12{x^6}{y^4} + 9{x^5}{y^3} - 15{x^2}{y^3}} \right):3{x^2}{y^3}\\ = \left( {12{{\rm{x}}^6}{y^4}:3{{\rm{x}}^2}{y^3}} \right) + \left( {9{x^5}{y^3}:3{x^2}{y^3}} \right) - \left( {15{x^2}{y^3}:3{x^2}{y^3}} \right)\\ = 4{x^4}y + 3{x^3} - 5\end{array}\)\(\begin{array}{l}b)\,\,\left( {{x^2} - 2} \right)\left( {1 - x} \right) + \left( {x + 3} \right)\left( {{x^2} - 3x + 9} \right)\\ = {x^2} - {x^3} - 2 + 2x + {x^3} - 3{x^2} + 9x + 3{x^2} - 9x + 27\\ = {x^2} + 2x + 25\end{array}\)
LG bài 3
Lời giải chi tiết:
\(\begin{array}{l}a)\,\,A = \dfrac{5}{{x + 3}} - \dfrac{2}{{3 - x}} - \dfrac{{3{x^2} - 2x - 9}}{{{x^2} - 9}}\,\,\left( {x \ne \pm 3} \right)\\ = \dfrac{5}{{x + 3}} + \dfrac{2}{{x - 3}} - \dfrac{{3{x^2} - 2x - 9}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \dfrac{{5\left( {x - 3} \right) + 2\left( {x + 3} \right) - 3{{\rm{x}}^2} + 2x{\rm{ + }}9}}{{\left( {x + 3} \right)\left( {x - 3} \right)}}\\ = \dfrac{{5x - 15 + 2x + 6 - 3{x^2} + 2x\,{\rm{ + }}\,9}}{{\left( {x + 3} \right)\left( {x - 3} \right)}}\\ = \dfrac{{ - 3{x^2} + 9x}}{{\left( {x + 3} \right)\left( {x - 3} \right)}}\\ = \dfrac{{ - 3x\left( {x - 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} = \dfrac{{ - 3x}}{{x + 3}}.\end{array}\)
\(b)\,\,\left| {x - 2} \right| = 1 \Rightarrow \left[ \begin{array}{l}x - 2 = 1\\x - 2 = - 1\end{array} \right. \)
\(\Rightarrow \left[ \begin{array}{l}x = 3\left( {ktm} \right)\\x = 1\left( {tm} \right)\end{array} \right.\)
Với \(x = 1\) thay vào A ta có: \(A = \dfrac{{ - 3.1}}{{1 + 3}} = \dfrac{{ - 3}}{4}\).
c) Ta có: \(A = \dfrac{{ - 3x}}{{x + 3}} = - 3 + \dfrac{9}{{x + 3}}\), để\(A\) nguyên \( \Leftrightarrow \left( {x + 3} \right) \in U\left( 9 \right) = \left\{ { \pm 1;\; \pm 3;\; \pm 9} \right\}\)
\(x + 3\) | 1 | -1 | 3 | -3 | 9 | -9 |
\(x\) | -2 (tm) | -4 (tm) | 0 (tm) | -6 (tm) | 6 (tm) | -12 (tm) |
Vậy với \(x \in \left\{ { - 2; - 4;\;0; - 6;\;6; - 12} \right\}\) thì \(A\) nguyên.
LG bài 4
Lời giải chi tiết:
a) Ta có: Vì \(D\) và \(B\) đối xứng với nhau qua \(M\) (gt)\( \Rightarrow M{\rm{D}} = MB\)(tính chất hai điểm đối xứng với nhau qua 1 điểm)
Xét tứ giác \(ABC{\rm{D}}\) ta có: \(\left\{ \begin{array}{l}MC = MA\left( {gt} \right)\\M{\rm{D}} = MB\left( {cmt} \right)\end{array} \right.\)
\( \Rightarrow \) Tứ giác \(ABC{\rm{D}}\) là hình bình hành (dhnb)
b)Vì \(N\) đối xứng với \(B\) qua \(A\) (gt)
\( \Rightarrow NA = AB\)(tính chất)
Lại có \(ABC{\rm{D}}\) là hình bình hành (cmt)
\( \Rightarrow \left\{ \begin{array}{l}DC = AB\\DC//AB\end{array} \right.\)(tính chất) \( \Rightarrow \left\{ \begin{array}{l}DC = AN\\DC//AN\end{array} \right.\)
\( \Rightarrow AN{\rm{D}}C\) là hình bình hành (dhnb)
Mặt khác, \(\angle CAB = {90^0}\left( {gt} \right) \Rightarrow \angle CAN = {90^0}\)
\( \Rightarrow \)hình bình hành \(AN{\rm{D}}C\) là hình chữ nhật (dhnb) (đpcm)
c)Xét \(\Delta BNI\) có: \(AK//NI\) (do \(AK//MN\) )
\(NA = AB\left( {gt} \right)\)
\( \Rightarrow \)\(AK\) là đường trung bình của \(\Delta BNI\)(định lý)
\( \Rightarrow KI = KB\) (tính chất)
Xét \(\Delta CAK\) có: \(MI//AK\) (do \(AK//NI\))
\(MA = MC\) (gt)
\( \Rightarrow \)\(MI\) là đường trung bình của \(\Delta ACK\) (dhnb)
\( \Rightarrow IK = CI\) (tính chất)
Mà \(KC = CI + IK \Rightarrow KC = 2KI = 2KB\) (do \(KI = KB\))
d)Vì \(BE//MN\left( {gt} \right) \Rightarrow BE//IM \Rightarrow \) Tứ giác \(BEMI\) là hình thang (dấu hiệu nhận biết hình thang)
Lại có: K là trung điểm của BI (cmt) và \(AK//MI\left( {cmt} \right) \Rightarrow A\)là trung điểm của EM (trong hình thang, nếu một đường thẳng đi qua trung điểm của cạnh bên thứ nhất và song song với cạnh đáy thì đi qua trung điểm của cạnh bên thứ hai)
Xét tứ giác \(BENM\) có hai đường chéo BN và EM cắt nhau tại trung điểm A của mỗi đường.
\( \Rightarrow BENM\)là hình bình hành (dhnb)
Mà \(BN \bot EM\left( {gt} \right) \Rightarrow \) hình bình hành BENM là hình thoi (dhnb)
Để hình thoi BENM là hình vuông khi và chỉ khi \(AB = AM \Leftrightarrow AB = \dfrac{1}{2}AC\).
LG bài 5
Lời giải chi tiết:
\(\begin{array}{l}P = {a^5} - {a^4} - 18{a^3} + 9{a^2} - 5a + 2017 + \left( {{a^4} - 40{a^2} + 4} \right):{a^2}\\\;\;\; = \left( {{a^5} - 5{a^4} + 2{a^3}} \right) + \left( {4{a^4} - 20{a^3} + 8{a^2}} \right) + \left( {{a^2} - 5a + 2} \right) + 2015 + \dfrac{{{a^4} - 40{a^2} + 4}}{{{a^2}}}\\\;\;\; = {a^3}\left( {{a^2} - 5a + 2} \right) + 4{a^2}\left( {{a^2} - 5a + 2} \right) + 2015 + \dfrac{{{a^4} - 40{a^2} + 4}}{{{a^2}}}\\\;\;\; = 2015 + \dfrac{{{a^4} - 40{a^2} + 4}}{{{a^2}}}\\\;\;\; = \dfrac{{{a^4} + 1975{a^2} + 4}}{4}.\end{array}\)
Theo đề bài ta có: \({a^2} - 5a = - 2 \Rightarrow {\left( {{a^2} - 5a} \right)^2} = 4 \Rightarrow {a^4} - 10{a^3} + 25{a^2} = 4\)
\(\begin{array}{l}P = \dfrac{{{a^4} + 1975{a^2} + 4}}{{{a^2}}}\\\;\;\; = \dfrac{{\left( {{a^4} - 10{{\rm{a}}^3} + 25{{\rm{a}}^2}} \right) + \left( {10{a^3} - 50{a^2} + 20a} \right) + \left( {4{a^2} - 20a + 8} \right) + 1996{a^2} - 4}}{{{a^2}}}\\\;\;\; = \dfrac{{4 + 10a\left( {{a^2} - 5a + 2} \right) + 4\left( {{a^2} - 5a + 2} \right) + 1996{a^2} - 4}}{{{a^2}}} = 1996\end{array}\)
Vậy \(P = 1996.\)
SOẠN VĂN 8 TẬP 1
CHƯƠNG 11. SINH SẢN
Bài 19. Địa hình với tác động của nội, ngoại lực
Bài 1. Tự hào về truyền thống dân tộc Việt Nam
Bài 20. Khí hậu và cảnh quan trên Trái Đất
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8