1. Đề số 1 - Đề kiểm tra học kì 1 Toán 8
2. Đề số 2 - Đề kiểm tra học kì 1 Toán 8
3. Đề số 3 - Đề kiểm tra học kì 1 Toán 8
4. Đề số 4 - Đề kiểm tra học kì 1 Toán 8
5. Đề số 5 - Đề kiểm tra học kì 1 Toán 8
6. Đề số 6 - Đề kiểm tra học kì 1 Toán 8
7. Đề số 7 - Đề kiểm tra học kì 1 Toán 8
8. Đề số 8 - Đề kiểm tra học kì 1 Toán 8
9. Đề số 9 - Đề kiểm tra học kì 1 Toán 8
10. Đề số 10 - Đề kiểm tra học kì 1 Toán 8
11. Đề số 11 - Đề kiểm tra học kì 1 Toán 8
12. Đề số 12 - Đề kiểm tra học kì 1 Toán 8
13. Đề số 13 - Đề kiểm tra học kì 1 Toán 8
14. Đề số 14 - Đề kiểm tra học kì 1 Toán 8
15. Đề số 15 - Đề kiểm tra học kì 1 Toán 8
16. Đề số 16 - Đề kiểm tra học kì 1 Toán 8
17. Đề số 17 - Đề kiểm tra học kì 1 Toán 8
18. Đề số 18 - Đề kiểm tra học kì 1 Toán 8
19. Đề số 19 - Đề kiểm tra học kì 1 Toán 8
20. Đề số 20 - Đề kiểm tra học kì 1 Toán 8
21. Đề số 21 - Đề kiểm tra học kì 1 Toán 8
22. Đề số 22 - Đề kiểm tra học kì 1 Toán 8
1. Đề thi kì 1 môn toán 8 năm 2019 - 2020 trường THCS Nguyễn Tất Thành
2. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 PGD Thanh Trì
3. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 PGD quận Bình Tân
4. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 PGD Tân Phú
5. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Bình Chánh
6. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Quận 11
7. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 Trường THCS Trung Sơn Trầm
8. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Phú Nhuận
9. Đề thi kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Nam Từ Liêm
10. Đề thi kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Đống Đa
11. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GD&ĐT Lập Thạch
12. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GD&ĐT Quận 12
13. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 phòng GDĐT Hóc Môn
14. Đề thi học kì 1 môn toán lớp 8 năm 2019 - 2020 sở GDĐT Bắc Giang
1. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 trường THCS Dịch Vọng
2. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 trường THCS Nghĩa Tân
3. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 trường THCS Nguyễn Tri Phương
4. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 trường THCS Bình Thọ
5. Đề thi học kì 2 môn toán lớp 8 năm 2019 - 2020 PGD huyện Ba Vì
6. Giải đề thi học kì 2 toán lớp 8 năm 2020 - 2021 THCS Giảng Võ
Đề bài
Bài 1 (2 điểm)Chọn chữ cái trước đáp án đúng:
1. Đa thức \(12x - 36 - {x^2}\) bằng:
A. \( - {\left( {x + 6} \right)^2}\)
B. \({\left( { - x - 6} \right)^2}\)
C. \({\left( { - x + 6} \right)^2}\)
D. \( - {\left( {x - 6} \right)^2}\)
2. Kết quả của phép cộng: \(\dfrac{{3x - 1}}{{3x - 3}} + \dfrac{{ - 2}}{{3x - 3}}\)là:
A. \(\dfrac{{3x + 1}}{{3x - 3}}\)
B. \(\dfrac{{x + 1}}{{x - 3}}\)
C. \(1\)
D. \(\dfrac{{3x - 5}}{{3\left( {3x - 3} \right)}}\)
3. Kết quả rút gọn biểu thức:\(\left( {x - 2y} \right)\left( {{x^2} + 2xy + 4{y^2}} \right) - \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right)\) là:
A. \( - 16{y^3}\)
B. \( - 4{y^3}\)
C. \(16{y^3}\)
D. \( - 12{y^3}\)
4. Số dư khi chia đa thức: \(3{x^4} - 2{x^3} + {x^2} - 2x + 2\) cho đa thức \(x - 2\) là:
A. \(50\)
B. \(34\)
C. \(32\)
D. \(30\)
5. Hình vuông có độ dài đường chéo là \(6cm\). Độ dài cạnh hình vuông đó là:
A. \(\sqrt {18} \,cm\)
B. \(18\,cm\)
C. \(3\,cm\)
D. \(4\,cm\)
6. Một hình chữ nhật có diện tích \(15{m^2}\). Nếu tăng chiều dài lên hai lần, chiều rộng lên ba lần thì diện tích của hình chữ nhật mới là:
A. \(30\,{m^2}\)
B. \(45\,{m^2}\)
C. \(90\,{m^2}\)
D. \(75\,{m^2}\)
7. Cho hình thang cân \(ABC{\rm{D}}\,\left( {AB//C{\rm{D}}} \right)\) có \(\angle A = {135^0}\) thì \(\angle C\) bằng:
A. \({35^0}\)
B. \({45^0}\)
C. \({55^0}\)
D. Không tính được.
8. Tứ giác có các đỉnh là trung điểm các cạnh của một tứ giác có hai đường chéo bằng nhau là:
A. Hình thang cân
B. Hình chữ nhật
C. Hình thoi
D. Hình vuông
Bài 2 (1,0 điểm)Phân tích đa thức sau thành nhân tử:
a)\(6xy + 12x - 4y - 8\)
b)\({x^3} + 2{x^2} - x - 2\)
Bài 3 (1,5 điểm)
a)Chứng minh rằng giá trị biểu thức sau không phụ thuộc vào giá trị của biểu thức: \({\left( {x - 2} \right)^2} - \left( {x - 1} \right)\left( {x + 1} \right) + 4\left( {x + 2} \right)\)
b)Tìm \(x\) biết: \(\left( {2 - x} \right)\left( {2 + x} \right) = 3\)
Bài 4 Thực hiện phép tính:
a)\(\dfrac{{x + 2}}{{x - 3}} - \dfrac{{{x^2} + 6}}{{{x^2} - 3x}}\)
b)\(\dfrac{{4x - 4}}{{{x^2} - 4x + 4}}:\dfrac{{{x^2} - 1}}{{{{\left( {2 - x} \right)}^2}}}\)
Bài 5 Cho \(\Delta ABC\) có \(A{\rm{D}}\) là phân giác của \(\angle BAC\;\,\,\left( {D \in BC} \right)\). Từ\(D\) kẻ các đường thẳng song song với \(AB\) và \(AC\), chúng cắt \(AC,\,AB\) tại \(E\) và \(F\).
a)Chứng minh: Tứ giác \(A{\rm{ED}}F\) là hình thoi.
b)Trên tia \(AB\) lấy điểm \(G\) sao cho \(F\) là trung điểm \(AG\). Chứng minh: Tứ giác \(EFG{\rm{D}}\) là hình bình hành.
c)Gọi \(I\) là điểm đối xứng của \(D\) qua \(F\) , tia \(IA\) cắt tia \(DE\) tại \(K\). Gọi \(O\) là giao điểm của \(A{\rm{D}}\) và \(EF\). Chứng minh: \(G\) đối xứng với \(K\) qua \(O\).
d)Tìm điều kiện của \(\Delta ABC\)để tứ giác \(A{\rm{D}}GI\) là hình vuông.
Bài 6 : Tính giá trị của biểu thức:\(\left( {1 - \dfrac{1}{{{2^2}}}} \right)\left( {1 - \dfrac{1}{{{3^2}}}} \right)\left( {1 - \dfrac{1}{{{4^2}}}} \right)...\left( {1 - \dfrac{1}{{{{2017}^2}}}} \right)\)
LG bài 1
Lời giải chi tiết:
Bài 1.
1D | 2C | 3A | 4B |
5A | 6C | 7B | 8C |
LG bài 2
Lời giải chi tiết:
\(\begin{array}{l}a)\,\,6xy + 12x - 4y - 8 = 6x\left( {y + 2} \right) - 4\left( {y + 2} \right)\\ = \left( {y + 2} \right)\left( {6x - 4} \right).\\b)\,\,{x^3} + 2{x^2} - x - 2 = {x^2}\left( {x + 2} \right) - \left( {x + 2} \right)\\ = \left( {x + 2} \right)\left( {{x^2} - 1} \right) = \left( {x + 2} \right)\left( {x + 1} \right)\left( {x - 1} \right).\end{array}\)
LG bài 3
Lời giải chi tiết:
\(a)\,\,{\left( {x - 2} \right)^2} - \left( {x - 1} \right)\left( {x + 1} \right) + 4\left( {x + 2} \right)\)\(\; = {x^2} - 4x + 4 - {x^2} + 1 + 4x + 8 = 13\)
Do đó giá trị của biểu thức không phụ thuộc vào giá trị của biến.
\(\begin{array}{l}b)\,\,\left( {2 - x} \right)\left( {2 + x} \right) = 3\\ \Leftrightarrow 4 - {x^2} - 3 = 0\\ \Leftrightarrow {x^2} = 1 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right..\end{array}\)
LG bài 4
Lời giải chi tiết:
\(\begin{array}{l}a)\,\,\dfrac{{x + 2}}{{x - 3}} - \dfrac{{{x^2} + 6}}{{{x^2} - 3x}} = \dfrac{{\left( {x + 2} \right)x - {x^2} - 6}}{{x\left( {x - 3} \right)}}\;\;\;\;\left( {x \ne 0,\;\;x \ne 3} \right)\\\; = \dfrac{{{x^2} + 2x - {x^2} - 6}}{{x\left( {x - 3} \right)}} = \dfrac{{2\left( {x - 3} \right)}}{{x\left( {x - 3} \right)}} = \dfrac{2}{x}\\b)\,\,\dfrac{{4x - 4}}{{{x^2} - 4x + 4}}:\dfrac{{{x^2} - 1}}{{{{\left( {2 - x} \right)}^2}}}\;\;\;\;\left( {x \ne 2;\;x \ne \pm 1} \right)\\\;\; = \dfrac{{4\left( {x - 1} \right)}}{{{{\left( {x - 2} \right)}^2}}}.\dfrac{{{{\left( {2 - x} \right)}^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{4}{{x + 1}}.\end{array}\)
LG bài 5
Lời giải chi tiết:
a)Xét tứ giác \(AFDE\) có: \(\left\{ \begin{array}{l}A{\rm{E}}//AF\\DF//A{\rm{E}}\end{array} \right.\left( {gt} \right) \Rightarrow AFDE\) là hình bình hành (dhnb)
Lại có, \(A{\rm{D}}\) là phân giác của \(\angle BAC\;\left( {gt} \right) \Rightarrow \) hình bình hành \(AFDE\) là hình thoi (dhnb)
b)Vì \(AFDE\) là hình thoi (cmt)
\( \Rightarrow E{\rm{D}} = AF\) (tính chất hình thoi)
Mà \(F\) là trung điểm của \(AG\left( {gt} \right) \Rightarrow AF = FG\) (tính chất trung điểm) \( \Rightarrow E{\rm{D}} = GF\left( { = AF} \right).\)
Mà \(GF//E{\rm{D}}\left( {gt} \right) \Rightarrow FEDG\) là hình hình hành (dhnb)
c)Vì \(I\) là điểm đối xứng của \(D\) qua \(F\)(gt) \( \Rightarrow F\) là trung điểm của \(I{\rm{D}}\) (tính chất hai điểm đối xứng qua một điểm)
Xét tứ giác \(AIG{\rm{D}}\) có \(AG\) và \(DI\) cắt nhau tại trung điểm \(F\) của mỗi đường (cmt)
\( \Rightarrow AIG{\rm{D}}\) là hình bình hành (dhnb)
\( \Rightarrow AI//G{\rm{D}}\) (tính chất)
\( \Rightarrow G{\rm{D}}//AK\) (do \(I,\,A,\,K\) thẳng hàng) (1)
Lại có, \(DE//AB\left( {gt} \right) \Rightarrow DK//AG\) (2)
Từ (1) và (2) \( \Rightarrow AK{\rm{D}}G\) là hình bình hành (dhnb)
Mà hai đường chéo \(A{\rm{D}},\,GK\)cắt nhau tại trung điểm O nên suy ra \(G\) đối xứng với \(K\) qua \(O\). (đpcm)
d)Hình thoi \(IA{\rm{D}}G\) là hình vuông khi và chỉ \(\angle IA{\rm{D}} = {90^0} \Leftrightarrow \Delta ABC\) vuông tại \(A\).
Thật vậy, ta có: \(IA{\rm{D}}G\) là hình vuông nên suy ra \(\angle BA{\rm{D}} = {45^0}\)
mà AD là phân giác của \(\angle BAC\left( {gt} \right) \Rightarrow \angle BAC = 2\angle BA{\rm{D}} = {2.45^0} = {90^0} \Rightarrow \Delta ABC\) vuông tại A.
LG bài 6
Lời giải chi tiết:
Bài 6.
\(\begin{array}{l}\;\;\;\left( {1 - \dfrac{1}{{{2^2}}}} \right)\left( {1 - \dfrac{1}{{{3^2}}}} \right)\left( {1 - \dfrac{1}{{{4^2}}}} \right)...\left( {1 - \dfrac{1}{{{{2017}^2}}}} \right)\\ = \dfrac{{\left( {{2^2} - 1} \right)\left( {{3^2} - 1} \right)\left( {{4^2} - 1} \right)...\left( {{{2017}^2} - 1} \right)}}{{{2^2}{{.3}^2}{{.4}^2}{{...2017}^2}}}\\ = \dfrac{{\left( {2 - 1} \right)\left( {2 + 1} \right)\left( {3 - 1} \right)\left( {3 + 1} \right)......\left( {2017 - 1} \right)\left( {2017 + 1} \right)}}{{{2^2}{{.3}^2}{{.4}^2}{{...2017}^2}}}\\ = \dfrac{{1.3.2.4....2016.2018}}{{{{\left( {2.3.4...2017} \right)}^2}}} = \dfrac{{1.2.{{\left( {3.4...2016} \right)}^2}.2017.2018}}{{{{\left( {1.2.3...2017} \right)}^2}}}\\ = \dfrac{{1.2.2017.2018}}{{{2^2}{{.2017}^2}}} = \dfrac{{2018}}{{2.2017}} = \dfrac{{1009}}{{2017}}.\end{array}\)
Phần 1: Chất và sự biến đổi chất
Bài 8. Lập kế hoạch chi tiêu
Unit 3. Leisure activities
Chủ đề 8. Vui chào hè về
Chủ đề VIII. Sinh vật và môi trường
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8